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The Argentine Precordillera was rifted from ?gﬁg&:ﬁ;‘uﬁf continental crus

the Ouachita embayment of Laurentia during Intracratonic basement fault

Cambrian time. The Ouachita rifted margin —v— Cratonward limit of Appalachian-
along the Texas promontory of Laurentia ex- Trgﬂ:tcf';'ﬁtde‘“hmem

hibits a narrow zone of transitional crust,a | ------ Margin of Guif and Atiantic

lack of synrift rocks, and a thin passive-margin Coastal Plains

succession, indicating slow and limited postrift
subsidence. In contrast, data from the western
margin of the Precordillera suggest more ex-
tensive synrift sediment accumulations and
document a thick passive-margin successior
indicating more rapid and relatively greater

postrift subsidence than along the Ouachita
margin of Laurentia. Passive-margin deposi-
tion began in latest Early Cambrian time

around the Precordillera, but it did not begin

before latest Middle Cambrian time around

the Ouachita embayment. The contrasts in
structure and stratigraphy are best explained
by an asymmetric rift system in the context of
simple-shear, low-angle—detachment model:
for continental rifting. Differences in subsid-

ence rates and inferred crustal structure sug-
gest that the rifted margin of the Ouachita
embayment represents an upper-plate configu-
ration, whereas the conjugate margin on the
western Precordillera represents a lower-plate Figure 1. Map of southeastern North America showing the location of the Ouachita embay-

Atiantic
Ocean

configuration. ment of Laurentia, the restored location of the Argentine Precordillera, the general outline of
the late Precambrian—Cambrian rifted margin of Laurentia and related structures (after
INTRODUCTION Thomas and Astini, 1996), and the outline of the Appalachian (A) and Ouachita (O) allochthon.

The Argentine Precordillera is recognized as

continental fragment that was rifted from thewvestern South America) during Ordovician timgRamos et al., 1986; Abbruzzi et al., 1993; Kay
Ouachita embayment of the margin of LaurentigAstini et al., 1995a, 1996; Thomas and Astiniet al., 1996). Shallow-marine shelf faunas of
(present southeastern North America) durin@996). Several independent lines of evidence do€Gambrian age in the Precordillera are dominated

Cambrian time (Fig. 1) and subsequently accretednent the original Laurentian site of the Preby Laurentian forms (Borrello, 1971; Vaccari,
to the western margin of Gondwana (preserordillera. Precambrian basement rocks of the994), but successive Ordovician faunas of the
Precordillera (sampled from xenoliths in TertiaryPrecordillera show increasing endemism and, ul-

*E-mail: geowat@pop.uky.edu. plutons) are similar in age and geochemistry tmately, mixing of Gondwanan elements (e.g.,
TE-mail: rastini@satlink.com. basement rocks of the Llano region of LaurentiBenedetto, 1993; Astini et al., 1995a). Cambrian
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and Lower Ordovician carbonate successionas old as Early Cambrian age. The succession sidence on both margins of the rift (Buck et al.,
sedimentary facies, and faunas in both the Prthe Precordillera is more than three times as thid®88), implying similar times, rates, and thick-
cordillera and southern Laurentia record the evas that on the Texas promontory (Fig. 2). Theseesses of passive-margin sediment accumulation
lution of similar passive-margin shelves in apsubstantial differences between the stratigraphan both sides of the rift (i.e., symmetrical distrib-
proximately the same paleolatitudinal belt, anduccessions might seem to be inconsistent withion of thickness and stratigraphic ages).
numerous examples exhibit similarities in specifithe interpretation that the Texas promontory and Simple-shear (low-angle—detachment) models
lithologic details (Barnes, 1959; Johnson et althe Precordillera are the opposite sides of thHfer continental rifting imply asymmetrical rift
1988; M. Keller et al., 1989; Astini, 1995; Astini Ouachita rift (Fig. 2) (Thomas and Astini, 1996) structures and include contrasting structural con-
etal., 1995a, 1995h, 1996; Cafias, 1995; Thom&sibstantial differences in late synrift and passivédigurations that distinguish upper and lower plates
and Astini, 1996). The Ouachita embayment hasargin (postrift) stratigraphy on opposite sides dfFig. 3) (e.g., Wernicke, 1985; Lister et al., 1986,
dimensions comparable to those of the Prerift, as well as similarities across a transformi991; Etheridge et al., 1989; Wernicke and Tilke,
cordillera, and a compatible kinematic historymargin, however, are predictable within the con1989). On the lower plate, rotated blocks are
links the Precordillera to Laurentia (summarizedext of mechanical and thermal models for contibounded by listric faults that sole into an ocean-
in Thomas and Astini, 1996). A recently obtainedhental rifting. ward-dipping low-angle detachment fault (Lister
Early Cambrian paleomagnetic pole for the north- The purpose of this article is to compare thet al., 1991), and continental crust thins gradually
ern Precordillera corresponds to the coeval Lasynrift and postrift stratigraphy of the Pre-across a wide zone of transition to oceanic crust.
rentian pole in a reconstruction that places theordillera with that of the Ouachita rifted marginSedimentary accumulations on lower-plate mar-
Precordillera in the Ouachita embayment of Lawsf Laurentia in order to place the style of riftinggins include locally thick, fault-rotated, synrift
rentia (Rapalini and Astini, 1998). in the context of available mechanical and thegraben-fill deposits, as well as thick, late synrift
Distributions and ages of synrift rocks andnal models for continental rifting. Sedimento-and early postrift (passive margin) deposits uncon-
structures of southeastern (all directions in préegic data indicate similar depositional condiformably (locally conformably) overlying the
sent coordinates) Laurentia indicate diachronou®ns on the passive margins (summarized igraben-fill rocks and associated crustal horsts. The
rifting during latest Precambrian and Cambriastini et al., 1995a; Thomas and Astini, 1996)upper plate, in contrast, generally is characterized
time (Thomas, 1991). A block of continentaltherefore, the cause(s) of the differences in thiclby a relatively narrow, broadly arched zone of tran-
crust (the Precordillera), bounded by the northaess and time of initiation of passive-margin degsition from full-thickness continental crust to
east-striking Ouachita rift and the northwestesition must be sought in the structural and theoceanic crust and by a few steep oceanward-
striking Alabama-Oklahoma transform fault,mal history of the rift and postrift margins. dipping normal faults (Lister et al., 1991). Because
was removed from the Ouachita embayment @ubsidence profiles from stratigraphic succe®f thermal uplift (Fig. 3), accumulations of synrift
southern Laurentia as the Ouachita rift openeslons can be used to document the history of thepcks along the upper-plate margin are limited in
during Cambrian time (Fig. 1) (Thomas, 1991mal uplift and subsidence of rifted marginsextent and thickness; and postrift, passive-margin
Astini et al., 1995a; Thomas and Astini, 1996(Bond et al., 1984). Available data are not aburshelf successions are relatively thin. In contrast, as
for an alternative view that does not recognizdant; however, stratigraphic successions for conthe lower plate moves away from the heat-flow
Cambrian rifting, see Dalziel, 1997). In this conparison of subsidence history can be assemblethximum (Buck et al., 1988), crustal subsidence
text, the Ouachita rift margin of the Ouachitan key locations for both the Precordillera andegins earlier and reaches greater magnitude than
embayment and Texas promontory of Laurentiiexas promontory. The results of this work willon the upper plate (Fig. 3). Therefore, simple-shear

is conjugate to the western margin of the Preielp to focus future acquisition of data. models predict contrasting synrift and passive-
cordillera, and the Alabama-Oklahoma trans- margin shelf successions on the opposite conju-
form margin of the Ouachita embayment and AIBACKGROUND gate margins (i.e., asymmetrical distribution of
abama promontory was originally contiguous thickness and stratigraphic ages), a defining prin-
with the northern margin of the Precordillera Current models for continental rifting com-ciple for reconstruction of rifted margins. Off-shelf
(Figs. 1 and 2). prise two general end members: pure-shear, syipassive-margin deposits on both upper and lower

Strong similarities in lithology, stratigraphic metrical-rift models; and simple-shear, asymmeplates represent deep-water deposition on thinned
succession, and general thickness specifically linfical-rift, low-angle—detachment models (e.g.continental (transitional) crust to oceanic crust and
redbeds of the Lower Cambrian Cerro Totora Fot-ister et al., 1986; Buck et al., 1988). These alare not directly sensitive to thermal uplift and sub-
mation of the northernmost Precordillera with théernatives for mechanical extension and heat flogidence of the shelf.
temporally equivalent Rome Formation of the Alpredict distinctive sedimentary accumulations Abrupt changes in structural style along the
abama promontory of southeastern Laurentiaoth in synrift grabens and on passive-margistrike of a rift are localized at transform faults,
(Astini et al., 1995b). The Lower and Middle continental shelves. Because of specific implicavhich function as offsets of the rift and as bound-
Cambrian stratigraphic succession of the Birmtions for synrift and postrift structures and sediaries between domains of opposite dip of the de-
ingham graben within the Alabama promontory isnent accumulation, the overall geometry of &achment (Lister et al., 1986; Rosendahl, 1987).
similar to that of the northernmost Precordillerasifted margin can be inferred from structure andransform margins are distinct from rift margins
suggesting similar tectonic evolution on oppositstratigraphy (e.g., Issler et al., 1989; Osleger arltecause of an abrupt transition from full-thick-
sides of the Alabama-Oklahoma transform faulRead, 1993; Thomas, 1993; Walker et al., 1994hess continental crust to oceanic crust (Keen,
(Fig. 1). In contrast, the Cambrian-Ordovician Pure-shear models of continental stretchin§982; Scrutton, 1982; Keen and Haworth, 1985;
passive-margin stratigraphy on the Texas promomnply symmetrical rift structures, including op-Keen et al., 1990; Reid and Jackson, 1997). Steep
tory of Laurentia differs markedly from that of thepositely facing half-grabens on opposite sides déults parallel some transform fault systems (e.qg.,
Precordillera. The base of the passive-margin suitxe rift (e.g., McKenzie, 1978; Lister et al., 1986) Mascle and Blarez, 1987; Sylvester, 1988; Keen
cession on the Texas promontory contains nBGontinental crust thins at similar gradients fronet al., 1990), providing conduits for deep-source
strata older than latest Middle Cambrian, wheredmoth sides toward the rift. Heat-flow models yieldnagmas. During the opening of an ocean adja-
the succession on the Precordillera includes besisnilar patterns of synrift uplift and postrift sub-cent to a transform continental margin, the end of
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Figure 2. Schematic block diagram of the rifted margin and rift-related intracratonic fault systems around the Ouachita embaymeof south-
ern Laurentia (modified from Thomas, 1993) and the Precordillera fragment of Laurentia at the time of continental breakup (ca25 Ma). Ab-
breviations: BH—Birmingham graben; MV—Mississippi Valley graben; RC—Rough Creek graben; R—Rome trough; SO—Southern Okla-
homa fault system. The Ouachita rifted margins of both Laurentia and the Precordillera have been deformed and partly coveredddiochthonous
rocks and sedimentary deposits. The isopach map (thickness in meters) of the Cambrian—Lower Ordovician passive-margin sucaeésidhe
Texas promontory and Ouachita embayment is compiled from Barnes (1959) and Johnson et al. (1988). The stratigraphic thicknétseoCam-
brian—Lower Ordovician passive-margin succession is shown at specific localities on the Alabama promontory of Laurentia, alohg Southern
Oklahoma fault system, and in the Precordillera (bold numerals—thickness in meters of entire Cambrian—Lower Ordovician passiveangin
carbonate succession; bold numerals plus italicized numerals—thickness of Cambrian—Lower Ordovician passive-margin carbonatcsssion
plus thickness of underlying synrift succession; underlined italicized numerals—section containing evaporites; B—sedimentargeassion rest-
ing directly on basement; N—Ilower part of sedimentary cover and basement not documented). Sources of data for wells and medsstrati-
graphic sections on the Alabama promontory were summarized in Thomas (1988, 1991) and Thomas and Whiting (1995). The stratigiapéc-
tion for the Southern Oklahoma fault system is from Johnson et al. (1988) and Osleger and Read (1993). The measured stratigcag#ctions in
the Precordillera are compiled from Furque (1972), Baldis and Bordonaro (1981, 1984), Astini (1991), Keller et al. (1994), Vaccad44),
Lehnert (1995), and unpublished data (Astini).

the spreading ridge migrates along the active cothick, local graben fills; however, the diachro-narrow fault-bounded basins, and by restricted
tinent-ocean transform within a continental emnous ridge-end uplift may result in erosion of thearly postrift passive-margin deposits. The width
bayment, and a corresponding thermal uplift migraben-fill accumulations and associated basef thermal uplift is ~80 km (Todd and Keen,
grates along the transform margin of continentahent horsts. Therefore, transform margins ar&989), beyond which passive-margin deposition
crust (Todd and Keen, 1989). Possible synrift adikely to be characterized by either a lack of preen continental crust apparently is unaffected.
cumulations along a transform margin includeerved synrift rocks or local accumulations in Subsidence history as determined from back-
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stripping of stratigraphic successions on passiv A

margins records the mechanical and thermal ev

lution of the rift (e.g., Bond et al., 1984, 1995). An UPPER PLATE-- ’:’:’:’:’:’:’L’??:’f’f’f’f‘?
exponential d_ecay curve characterizes _postri' 'ﬁﬁ:—ﬁ:::::: ::-::'::’::f: A: $ :TLb'WE’R PLATE
thermal subsidence of stretched continente D D S A A

lithosphere (McKenzie, 1978). In this article,
subsidence history is used to characterize tector
history along both sides of the Ouachita rift and t« B thermal uplift
compare the conjugate margins of the Ouachit ; T -

embayment and the Precordillera.

OUACHITA RIFTED MARGIN OF
LAURENTIA
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Trace of the Margin

The intersection of the Alabama-Oklahoma cooling
transform fault and the Ouachita rift outlines subsidence

. } . O .- 1 - - S
the Ouachita embayment of Laurentia (Fig. 1 NN NN QOO0
(Thomas, 1991). The Alabama-Oklahoma trans [« s « s 7 s s ¢ s ¢ ¢ s s 2. , N
form also intersects the southern Blue Ridge rif«,» a7 a s a a” s a’a s lal?" mid I o e AT a
to outline the Alabama promontory, and the in- lriggean

tersection of the Ouachita rift with the Texas
transform outlines the Texas promontory (Fig. 1)
Figure 3. Sequential, schematic cross sections depicting the interaction of thermal uplift and iso-
Alabama-Oklahoma Transform Margin static crustal subsidence on opposite blocks of a low-angle detachment during continental rifting
and breakup in simple shear (designed to illustrate concepts from Wernicke, 1985; Lister et al.,

Seismic velocity and gravity models define 1986, 1991; Buck et al., 1988; Etheridge et al., 1989; Issler et al., 1989). (A) Trajectory of low-angle
narrow zone of transition (~25 km wide) along thedetachment (dashed line) prior to initial stretching. (B) Extended crust prior to breakup (geome-
edge of Laurentian continental crust at the locatiotry of faults from Lister et al., 1986). Maximum heat flow is at the intersection of the low-angle de-
of the Alabama-Oklahoma transform in the Ouatachment with the surface (Buck et al., 1988). Isostatic subsidence of thinned crust counteracts
chita embayment beneath the southern part of tithermal uplift (proportions and distribution of thermal uplift, crustal subsidence, and topography
Ouachita thrust belt in Arkansas (G. Keller et al.from Buck et al., 1988). Maximum topographic elevation of thermal uplift is at the edge of full-
1989a; Mickus and Keller, 1992). A boundary bethickness continental crust on the upper plate. Subsidence of thinned crust exceeds thermal uplift.
tween regions of contrasting magnetic signature(C) Following breakup and drift away from mid-ocean ridge. Cooling (thermal decay) subsidence
trends northwest-southeast (Hinze and Braileleads to transgression and initiation of passive-margin—shelf deposition on the upper plate. Crustal
1988) from the seismically defined edge of contisubsidence and shelf deposition continue on the lower plate.
nental crust, marking the trace of the transforn
(Fig. 1) (Thomas, 1991).

Passive-margin cover and late synrift rocks arglississippi Valley intracratonic graben systemslong the Birmingham graben and possibly re-
exposed in the Appalachian thrust belt (A, Fig. 1§Figs. 1 and 2) (Thomas, 1991). The Birmingharfliects initiation of shelf-carbonate deposition on
on the Alabama promontory and, along with ungraben fill was dismembered and displaced by latgothrown blocks. Facies variations in Middle
derlying basement, have been drilled in deepaleozoic Appalachian thrusting, but deep well€ambrian strata indicate nonuniform subsidence
wells. These data document a shallow-marine caand seismic reflection profiles enable reconstruand instability of the eastern shelf of Laurentia as
bonate platform across the Alabama promontoryon of the graben-fill stratigraphy, as well as théar north as the Tennessee embayment (Rankey
of southeastern Laurentia. Seismic reflection datét-stage basement structure (Thomas, 198%f al., 1994).
and a few deep wells show that an autochthono@891; Thomas and Whiting, 1995). Lower Cam- Westward across the Alabama promontory on
passive-margin carbonate-shelf facies around theian sandstone at the base of the successioritie regional horst between the Birmingham and
Ouachita embayment extends southward beneatterlain by a transgressive dolostone, above whidississippi Valley graben systems, relatively
the Ouachita allochthon (O, Fig. 1), which in-fine-grained siliciclastic rocks compose most ofhick carbonate successions overlie the basement
cludes off-shelf passive-margin rocks of Latehe graben fill. Drill samples document anhydriteéocks, suggesting initiation of passive-margin
Cambrian to Early Mississippian age (Viele anavithin the clastic succession (Raymond, 1991Yeposition as early as Middle Cambrian time
Thomas, 1989). Shelf-edge facies have not be&owever, no evaporites are preserved in outcrog&ig. 2). Thickness variations in the Cambrian
identified along the Alabama-Oklahoma transThe biostratigraphic range of the Birminghantarbonates and a basal sandstone suggest addi-
form, but the tectonic juxtaposition of temporallygraben fill is from Early Cambrian at the base téional, currently unmapped basement faults,
equivalent shelf and off-shelf facies restricts thearly Late Cambrian (Dresbachian) at the toprhich are also suggested by gravity and mag-
location of the shelf edge (Thomas, 1989). (Palmer, 1962, 1971). Irregular distribution ofnetic data (Johnson et al., 1994).

Synrift sedimentary rocks adjacent to the AlMiddle Cambrian carbonate facies and coeval fine The sedimentary fill of the Mississippi Valley
abama-Oklahoma transform are restricted to tte#liciclastic rocks (Thomas and Drahovzal, 1973yraben includes a basal sandstone, a transgressive
northeast-striking (rift-parallel) Birmingham andsuggests synsedimentary reactivation of faultsarbonate unit, and a relatively thick, dark mud-
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stone (summaries in Thomas, 1988, 1991). Least-dipping shelf bordered by a steep eadRidge rifted margin of Laurentia (Fig. 1), where
cally the graben-fill succession includes anhyfacing slope. the youngest synrift volcanic rocks are 564 + 9 Ma
drite (Mellen, 1977). The upper part of the Mis- Basement and passive-margin cover strata ag&leinikoff et al., 1995) and the transition from late
sissippi Valley graben fill contains trilobites ofexposed around the Llano uplift on the Texasynrift to passive-margin sediment deposition is
early Late Cambrian (Dresbachian) age (Ress@romontory (Fig. 1), and the passive-margin caearliest Cambrian (ca. 544 Ma) (Simpson and
1938; Grohskopf, 1955; Palmer, 1962, 1971)bonate succession has been penetrated in nunfeandberg, 1987; Simpson and Eriksson, 1989).
however, the age of the base of the successioriss wells north and east of the Llano uplift. Narhe diachroneity of active rifting indicates a shift
not defined biostratigraphically. synrift rocks have been recognized on the Texad the spreading center from the southern part of
The Southern Oklahoma fault system extendsromontory, and the transgressive passive-mardine Blue Ridge rift to the Ouachita rift at the be-
northwestward from the Ouachita rift into theshelf succession unconformably overlies Precanginning of Cambrian time (Thomas, 1991). The
Laurentian craton in a direction parallel to the Albrian basement rocks. An extensive Upper Canguccessive ages of active rifting encompass estab-
abama-Oklahoma transform (Fig. 1). Igneoubrian—Lower Ordovician passive-margin carbonlishment of a passive margin along the Blue Ridge
rocks (gabbros, basalts, granites, rhyolitesjte-shelf succession is generally <1000 m thiakft (margin of Laurentia including the Pre-
within the transform-parallel fault system rangen the Texas promontory (Fig. 2) (Barnes, 195%ordillera) followed by rifting of the Precordillera
in age from 552 + 7 Ma (U-Pb), to 539 + 2 MaDenison,in Johnson et al., 1988). At the base ofrom Laurentia (Thomas and Astini, 1996).
(Ar-Ar), to 525 + 25 Ma (Rb-Sr)(Lambert et al.,the passive-margin succession in exposures
1988; Hogan et al., 1996). Linear gravity andiround the Llano uplift, uppermost Middle Cam-RIFTED MARGIN OF THE
magnetic anomalies show that the igneous rocksian sandstones directly overlie crystalline bas€RECORDILLERA TERRANE
are restricted to a steeply bounded zone ~65 kment rocks, and local paleotopographic relief on
wide (Fig. 1) (Gilbert, 1983; Coffman et al.,the sub-Cambrian unconformity is >200 m In the Precordillera, neither the structure of the
1986; Thomas, 1991; Denison, 1995). ThéBarnes et al., 1972; Krause, 1996). The passivesp of Precambrian basement rocks nor the distri-
Southern Oklahoma (transform) fault system imargin succession thickens gradually southeadiution of synrift sedimentary rocks beneath An-
kinematically linked to rifting (Thomas, 1991, ward toward the trace of the rifted margin, and redean thrust sheets (Cenozoic thrusting) is known
1993), and the ages of the igneous rocks defirggonal isopach lines (Barnes, 1959) parallel thée.g., Cominguez and Ramos, 1991; Zapata and
the time of transform faulting, which tapped deeptrike of the Ouachita rifted margin between thdllmendinger, 1996). An abrupt down-to-the-west
sources of magma. Southern Oklahoma (transform) fault system andffset of basement rocks beneath the western Pre-
The synrift rocks, both sedimentary and igthe Texas transform (Fig. 2). cordillera is implied by eastward shallowing of the
neous, are overlapped by carbonate-shelf strataln a structural configuration like that along thebasal décollement (Allmendinger et al., 1990;
of middle Late Cambrian (Franconian) age, indiAlabama-Oklahoma transform, seismic dat&osen, 1992; Astini et al., 1995a); gravity data are
cating initiation of widespread passive-margirshow that the passive-margin carbonate succasnsistent with that interpretation (Introcaso et al.,
deposition (Thomas, 1991). The Upper Camsion on the Texas promontory dips southeastwal®92; Gimenez et al., 1997). The inferred configu-
brian—Lower Ordovician carbonate-shelfbeneath the Ouachita allochthon (O, Fig. 1dation of the top of basement rocks may reflect
succession is >1200 m thick from the AlabaméNicholas and Waddell, 1989). The Ouachita affaults associated with Ouachita rifting (Astini
promontory westward to the Ouachita embaylochthon consists of off-shelf passive-margin faet al., 1995a).
ment (Thomas, 1988). Between the Birmingharuies, and as it is along the Alabama-Oklahoma The oldest part of the exposed stratigraphic suc-
and Mississippi Valley graben systems, wher&ansform, the shelf edge is covered by the atession in Andean thrust sheets of the Precordillera

the carbonate succession probably includes Mitbchthon (Viele and Thomas, 1989). consists of Early Cambrian evaporites and red sili-
dle Cambrian strata, the total thickness of car- ciclastic rocks exposed only in the northern Pre-
bonate rocks is greater than in the graben sy§ime of Rifting cordillera (Astini et al., 1995a, 1995b; Astini and

tems (Fig. 2). The Lower Ordovician part of the Vaccari, 1996). The basal anhydrite-gypsum suc-

carbonate succession thickens locally in a nar- Ages of synrift rocks of the Birmingham, Mis- cession (>250 m) is interbedded with dolomitized
row, linear area along the Southern Oklahomsissippi Valley, and Southern Oklahoma systentyptomicrobial and oolitic tabular limestones.
fault system, where the entire Upper Cameonsistently indicate initiation of rifting at aboutThe redbed succession includes abundant halite-
brian—Lower Ordovician succession is >2000 nthe beginning of Cambrian time (545 Ma, usindiopper-crystal casts and intrasedimentary gypsum

thick (Denisonjn Johnson et al., 1988). the time scale of Tucker and McKerrow, 1995xrystals, which indicate extensive evaporation in
and continuation of crustal extension througlarid, supratidal environments (as shown by mod-
Ouachita Rift Margin early Late Cambrian time (ca. 503 Ma) (Thomasrn analogs; e.g., Shinn, 1983; Handford, 1991,

1991; Thomas and Astini, 1996). The age of th&/arren, 1991). Layers of wave-reworked detrital
Along the Ouachita rifted margin of thecarbonate-shelf succession, overlapping Precamgypsum, mud-cracked beds, stromatolites, and
Texas promontory of Laurentia, wells and seisbrian basement and synrift rocks, documents elrecciated beds with tepee structures are also com-
mic reflection profiles document a steep eastablishment of a passive margin on the Texa®son, suggesting cyclical subaerially exposed mud
ward descent of the top of crystalline basemepromontory by latest Middle Cambrian time (caflats and salt flats (e.g., Kendall and Warren, 1987;
rocks (Nicholas and Rozendal, 1975; Nichola§10 Ma) and entirely around the Ouachita enlDemicco and Hardie, 1994). The association of
and Waddell, 1989; Culotta et al., 1992). Gravbayment by middle Late Cambrian time (ca. 508vaporites and marginal-marine redbeds repre-
ity models illustrate thick continental crustMa) (Thomas, 1991). Coeval, passive-margisents restricted circulation that is commonly asso-
(=43 km) on the promontory and a relativelyoff-shelf rocks now in the Ouachita allochthorciated with early stages of continental rifting in
narrow zone of transitional crust (<75 km wide)are no older than Late Cambrian age (Ethingtdow-latitude, arid-climate settings (Kinsman,
along the rifted margin (Kruger and Keller,et al., 1989; Viele and Thomas, 1989). 1975; Rona, 1982; Miall, 1984; Warren, 1989).
1986; G. Keller et al., 1989b). Subsurface and Rifting around the Ouachita embayment offhe Lower Cambrian evaporite-redbed succession
geophysical data indicate an extensive, gentlyaurentia is younger than that along the Blusuggests synrift graben-filling deposition (Astini
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and Vaccari, 1996), either in the main (Ouachitaacies (laminated and massive dolostones) to thished profiles (Bond et al., 1984; Gonzalez
rift or in a Precordilleran intracratonic synrift north and progressively deeper water facies (ilrBonorino and Gonzalez Bonorino, 1991). Al-
graben similar to the Mississippi Valley and Birm-ner-platform limestones) toward the south. Lowelowing for changes in calibration of the geologic
ingham graben systems on Laurentia adjacent ididdle Cambrian dolostones on the north are réime scale, the profile in Figure 4A for the cen-
the Alabama-Oklahoma transform margin (Fig. 1placed southward by ramp limestones, and farthenal Precordillera is identical to that of Bond
Initiation of the passive-margin stage issouth by outer shelf-slope facies represented @t al. (1984). The section from the northern Pre-
recorded by upward gradation from the evapslistoliths (Bordonaro, 1985). Through most ofcordillera includes older beds at the base, specif-
orite-redbed succession to a thick carbonatbe Middle Cambrian succession, however, shaleally the Lower Cambrian synrift evaporite-
succession in the uppermost part of the Lowdow-water limestones and dolostones on the eastdbed succession (Astini and Vaccari, 1996),
Cambrian Series (Astini et al., 1995a; Astiniand coeval outer shelf-slope deep-water carboand the passive-margin succession in the north-
and Vaccari, 1996). Between the synrift evapates in olistoliths in the western Precordillera inern Precordillera is significantly thicker than that
orite-redbed succession and the limestonelicate distinct east-to-west polarity. East-west pan the central Precordillera (Fig. 2). The sections
dominated passive-margin succession, a thiarity has been further documented throughout there incomplete at the base; however, projection
transitional interval (~50 m) consists of red{ater stages of evolution of the Precordillera pa®f the profiles backward in time is compatible
dish arkosic silty shales and minor quartzose t&ive margin (Astini et al., 1995a, 1996). with initiation of rifting ca. 545 Ma and conti-
subfeldspathic sandstones with sparse evapor-West of the Precordillera carbonate shelf, aental breakup ca. 525 Ma (Fig. 4A). An artifact
ite and carbonate interbeds that grade upwareest-facing slope facies of Ordovician mudstonef backstripping sections with missing bases dis-
to quartz arenites and intercalated olive-greemrbidite contains olistoliths of both the shelf fatorts the profile of early subsidence history.
glauconitic shales and sandstones. The straties and the slope facies (Astini, 1988; AstinCompaction of the original (noncompacted)
graphic transition at the top of the graben fill i®t al., 1995a). The oldest strata of redepositatlickness of the exposed evaporite-redbed suc-
interpreted to indicate transgression associatastbpe facies are of late Early Cambrian ageession in the northern Precordillera accommo-
with cessation of riftingBonniaOlenellus (Benedetto et al., 1986; Vaccari and Bordonaralates part of the thickness of the lowermost pas-
Zone trilobites (Vaccari, 1990) in the greenl993; Bordonaro and Lifian, 1994; Palmer et alsive-margin carbonates, thereby reducing the
shales and dolomitized grainstones at the taf®96). The slope deposits also contain olistolithsomputed subsidence of basement beneath that
of the transitional interval define a minimumof quartz-pebble conglomerate, conglomeratisection. In contrast, because of the lack of pre-
age of Early Cambrian for active rifting. sandstone, and coarse lithic conglomerate, ttserved basal evaporite-redbed succession in the
Overstepping of the graben-fill succession bgomposition of which indicates a provenance afection from the central Precordillera, the entire
passive-margin carbonates marks the end of brientinental basement rocks (Banchig et al., 199€hickness of the lowermost passive-margin car-
tle stretching during the rifting stage and the beAstini, 1991, 1996; Mendoza et al., 1997). Suclonate is computed to be a result of basement
ginning of thermotectonic subsidence during theonglomerates have not been seen in stratigraplsicbsidence, thereby relatively increasing com-
drifting stage by late Early Cambrian time. Newposition; however, the olistoliths in the slope deputed basement subsidence beneath that section.
data from mafic rocks in the western Precordillerposits suggest graben-filling synrift rocks alongoincidentally, basement subsidence (reduced
further constrain the time of rifting from Lauren-the western rifted margin of the Precordillera, they evaporite-redbed compaction) computed for
tia. A preliminary U-Pb zircon age of 565 + 45margin that was formed by the Ouachita rifthe thicker passive-margin succession in the
Ma from microgabbros exposed in a thrust sheéfigs. 1 and 2) (Thomas and Astini, 1996). Palearorthern Precordillera is approximately equal to
in the southwestern Precordillera is interpreted amsagnetic data indicate no significant rotation ofhat computed for the thinner passive-margin
the crystallization age of the mafic rocks in thehe Precordillera block after Early Cambrian timesuccession (without a known underlying evapor-
earliest stages of ocean spreading (Davis et glRapalini and Astini, 1998), further suggestingte mudstone succession) in the central Pre-
1997). Within the range of uncertainty, this age fathat the west-facing slope of the Precordillera isordillera. Therefore, these profiles are useful to
initial ocean spreading is consistent with the Earlthe margin that faced the Ouachita rift of thélustrate the general form of subsidence history,

Cambrian age of rifting indicated by the uppeifexas promontory. but they depict the minimum magnitude of base-
Lower Cambrian stratigraphic transition from ment subsidence for each section. The distortion
synrift rocks upward to passive-margin carbonSUBSIDENCE HISTORY of the profiles by nonuniformly preserved and
ates, as well as with the rifting age of the Pre- exposed basal strata disappears in the later part
cordillera determined from subsidence curves Comparison of subsidence histories for key loef the subsidence computation, and the profiles
(Bond et al., 1984). cations on Laurentia and the Precordillera docdier the northern and central Precordillera are

The Middle Cambrian—Lower Ordovician pas-ments a range of responses to postrift thermsimilar. Allowing for shortening of present di-
sive-margin succession in the Precordillera rangssibsidence along the rifted margin. The subsimensions by Cenozoic Andean thrusting, the
from ~2400 to ~3100 m thick, approximatelydence history is presented here in profiles of thetratigraphic sections in the Precordillera repre-
three times as great as that on the Texas promalepth to top of crystalline basement rocks assent a position ~60 km east of the shelf edge (as
tory of Laurentia (Fig. 2). A north-to-south polar-function of time (Fig. 4). defined by the location of the slope facies).
ity of facies in Lower Cambrian rocks is replaced Backstripping of two stratigraphic sections Three profiles are shown here to represent the
by an east-to-west polarity in the Middle Camfrom the Precordillera yields subsidence profilesubsidence history of the thick continental crust
brian and younger passive-margin facies. LowdFig. 4A) that are typical of passive-margin theref the Texas promontory (Fig. 4B). The exposed
Cambrian marginal-marine siliciclastic rocks tamal subsidence. Each of the sections is truncatettatigraphic section and unconformable contact
the north are probably equivalent to shallowat the base by an Andean thrust fault; the thickvith basement rocks in the Llano uplift are thor-
marine, thin siliciclastic intervals within the lowerness and lithology of the initial deposits aboveughly documented (Barnes et al., 1972) as the
part of a cyclic carbonate succession to the souttasement are unknown. The section from thieasis for one subsidence profile. Extensive sub-
(Astini and Vaccari, 1996). The uppermost Lowecentral Precordillera is based on stratigraphisurface data compiled in regional isopach maps
Cambrian succession includes shallower marirdata that have been used for two previously pulgFig. 2) (Barnes, 1959; Johnson et al., 1988) for
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Figure 4. Tectonic subsidence profiles for
top of basement rocks derived from lithology-
dependent decompaction and backstripping
calculations (program by Wilkerson and Hsui,
1989; using porosity/depth data from Sclater
and Christie, 1980, and Schmoker and Halley,
1982). The profiles use the time scale of Tucker
and McKerrow (1995). (A) Passive-margin
successions at locations in the northern Pre-
cordillera (black line) and central Precordillera
(gray line). Stratigraphic data are from
Furque (1972), Baldis and Bordonaro (1981,
1984), Astini (1991), Keller et al. (1994),
Vaccari (1994), Lehnert (1995), and unpub-
lished data (Astini). No contact of the synrift
or passive-margin succession with basement is
exposed in these sections in the Precordillera;
therefore, the age of zero subsidence (initial
deposition on basement) and the depth of tec-
tonic subsidence of the top of basement at the
time of deposition of the oldest exposed rocks
are estimated. See text for discussion of effects
on subsidence curves of a lack of a complete
succession down to basement. (B) Passive-
margin successions from three locations on
the Texas promontory of Laurentia (dashed
line—Llano uplift; gray line—location ~60
km from shelf edge and midway between Al-
abama-Oklahoma and Texas transform
faults; black line—maximum thickness shown
by isopach maps on margin of Texas promon-
tory). Stratigraphic data are from Barnes
(1959), Barnes et al. (1972), and Johnson et al.
(1988). Passive-margin sedimentary rocks un-
conformably overlie basement rocks on the
Texas promontory, and the top of basement is
defined at zero depth at the beginning of dep-
osition. (C) Synrift and passive-margin suc-
cession from the palinspastic location of the
Birmingham graben. Palinspastic reconstruc-
tion is based on cross sections modified from
Thomas (1985). Stratigraphic data are from
Butts (1926), Mack (1980), Raymond (1991),
Osborne (1992), and interpretation of seismic
reflection profiles across the graben. The con-
tact of the synrift succession with basement is
imaged in seismic reflection profiles. (D) Car-
bonate-shelf succession from the Southern
Oklahoma fault system. Stratigraphic data
are from Johnson et al. (1988), Osleger and
Read (1993), and Denison (1997). The exposed
base of the carbonate-shelf succession over-
laps synrift igneous rocks and older Precam-
brian basement.
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the Texas promontory provide an opportunity t EXPLANATION @ EARLY EARLY CAMBRIAN
use regionally smoothed values for thicknes: early rift stage

- it | H "

rather than to rely on a possibly anomalou Exd passive-margin she ,\,\,\,\,\,:,:,:W

thickness from a single well. Furthermore, in or EACA AN AN A

der to compare subgsidence history at sites a SN passive-margin siope and rise B S s IODRINIISRINICI

proximately equidistant from the shelf edge, val , ) LAURENTIA-- PRECORDILLERA
- rift graben-fil

ues were selected from the isopach maps synitgrabent TEXAS PROMONTORY

represent a location ~60 km west of the she

edge (comparable to the restored distance fro

the ghelf edge to st_rgtigraphic_sections in the_ Pr END OF EARLY CAMBRIAN

cordillera). An additional section was compilec thermal uplift passive margin
from the isopach maps to represent the max e _sealevel

mum thickness of the carbonate-shelf facies ¢ AN PONIRN
the Texas promontory. The three subsidence pr RSO COEES O ESEE SOODOOOCOL

-
Fy

files for the Texas promontory indicate postrifi a
thermal subsidence and initiation of passive

margin shelf deposition in late Middle Cambriar

time, somewhat after the time of continenta @ MIDDLE CAMBRIAN
breakup as estimated from the ages of synri residual thermal uplift sea lovel
rocks. The subsidence of the Texas promonto TN T T4 AN
dlffers_ from that of the_Precordlllera, both in KESARKKAAXANNN i SIS
later time of initial subsidence below sea leve ARG mid_-goean )
and in lesser magnitude of subsidence (cf. Fig. ridge,
A and B). The subsidence profiles for the Texa
promontory and the Precordillera are similar i
that they show an exponential decrease (@ LATE CAMBRIAN
subsidence rate through time. Following mort passive-margin subsidence ‘
rapid initial subsidence in the Precordillera, the Sexzcrasracpaocgooy-----------SAleel_____________ Zrao
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subsidence rates are similar. AT T
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Stratigraphic data indicate a complex subsic Attt mid-ocean

ence history for the region of the Birminghan ridge

graben (Fig. 4C), including the effects of bott
Blue Ridge postrift thermal subsidence begin Figure 5. Sequential, schematic cross sections of continental rifting and breakup along the
ning ca. 544 Ma and Birmingham graben exterOuachita rift. Cross sections are proportional, vertically exaggerated, and not to scale. Propor-
sion continuing until ca. 503 Ma (Thomas, 1991)tional scale and rates of thermal uplift follow the models of Buck et al. (1988). (A) Early Early
Passive-margin carbonate facies overlap ttCambrian, ca. 540 Ma. Initial rifting and synrift graben filling. (B) End of Early Cambrian, ca.
Birmingham graben fill, and the postrift Late 518 Ma. After continental breakup; transition from synrift graben filling to initial passive-mar-
Cambrian—Early Ordovician subsidence historgin deposition on lower plate (Precordillera); thermal uplift of margin of upper plate (Lauren-
of the Birmingham graben is similar to the stratitia). (C) Middle Cambrian, ca. 512 Ma. Passive-margin carbonate-shelf deposition on subsiding
graphically recorded subsidence history of thlower plate (Precordillera); residual thermal uplift of passive margin on upper plate (Lauren-
Texas promontory (cf. Fig. 4, C and B), as well atia). (D) Late Cambrian, ca. 500 Ma. Continuation of shelf deposition on lower plate (Pre-
to the late stage of passive-margin subsidence cordillera); initial transgression and deposition of passive-margin shelf facies during thermal
the Precordillera (cf. Fig. 4, C and A). subsidence of upper plate (Laurentia).

The subsidence profile for the Southern Okla
homa fault system is unique in the region an
does not conform to a simple exponential theisubsidence. Dense mafic rocks at shallow crustal Laurentia indicates limited postrift subsidence
mal decay curve (Fig. 4D) (cf. Feinstein, 1981)levels provide an isostatic mechanism for cormef a broad uplift of the rift shoulder (Fig. 5). The
Carbonate-shelf deposition over the synrift igtinued subsidence. Load-driven subsidence is rpassive-margin stratigraphy and local paleotopo-
neous rocks and associated Precambrian bastricted to a narrow linear area along the Soutlgraphic relief on the underlying Precambrian
ment did not begin until middle Late Cambriarern Oklahoma fault system, corresponding to theasement are consistent with thermal buoyancy of
time (ca. 503 Ma), indicating persistent thermadiistribution of synrift mafic rocks (Feinstein,the upper plate above a low-angle detachment
uplift along the trend of the Cambrian igneoud981). Hence, the locally thick carbonate-shelfBuck et al., 1988). The narrow zone of transi-
rocks. Thermal subsidence accompanied bsuccession evidently reflects a transform-relateitbnal crust and the lack of synrift rocks further

transgression is recorded in the carbonate-shelfibsidence anomaly. suggest an upper plate structural configuration for
succession and is depicted in the subsidence pro- the Ouachita rifted margin. Although the unusu-

file for Late Cambrian time (Fig. 4D). A contin- DISCUSSION ally thin succession on the Llano uplift suggests a
uing high rate of subsidence rather than expo- stable cratonic setting (Osleger and Read, 1993),

nential decrease in subsidence rate after LateDeposition of a thin passive-margin successioit is within ~100 km of the rifted margin (as de-
Cambrian time (Fig. 4D) may reflect modifica-beginning in late Middle Cambrian time along thdined by the geophysically documented edge of
tion of thermal subsidence by load-driverOuachita rifted margin of the Texas promontorgontinental crust). The subsidence profiles for the
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