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Abstract

A lack of spatially and thematically accurate vegetation maps complicates conservation and management planning, as well as ecological

research, in tropical rain forests. Remote sensing has considerable potential to provide such maps, but classification accuracy within primary

rain forests has generally been inadequate for practical applications. Here we test how accurately floristically defined forest types in lowland

tropical rain forests in Peruvian Amazonia can be recognized using remote sensing data (Landsat ETM+ satellite image and STRM elevation

model). Floristic data and a vegetation classification with four forest classes were available for eight line transects, each 8 km long, located in

an area of ca 800 km2. We compared two sampling unit sizes (line transect subunits of 200 and 500 m) and several image feature

combinations to analyze their suitability for image classification. Mantel tests were used to quantify how well the patterns in elevation and in

the digital numbers of the satellite image correlated with the floristic patterns observed in the field. Most Mantel correlations were positive

and highly significant. Linear discriminant analysis was used first to build a function that discriminates between forest classes in the eight

field-verified transects on the basis of remotely sensed data, and then to classify those parts of the line transects and the satellite image that

had not been visited in the field. Classification accuracy was quantified by 8-fold crossvalidation. Two of the tierra firme (non-inundated)

forest types were combined because they were too often misclassified. The remaining three forest types (inundated forest, terrace forest and

Pebas formation/intermediate tierra firme forest) could be separated using the 500-m sampling units with an overall classification accuracy of

85% and a Kappa coefficient of 0.62. For the 200-m sampling units, the classification accuracy was clearly lower (71%, Kappa 0.35). The

forest classification will be used as habitat data to study wildlife habitat use in the same area. Our results show that remotely sensed data and

relatively simple classification methods can be used to produce reasonably accurate forest type classifications, even in structurally

homogeneous primary rain forests.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Western Amazonian rain forests have traditionally been

divided into two major forest types: inundated forests and

non-inundated (tierra firme) forests. Inundated forests are

structurally very heterogeneous, which has been recog-

nized to depend on factors such as the frequency, depth

and duration of inundation (Kalliola et al., 1992;
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Kubitzki, 1987; Prance, 1979). The tierra firme forests,

in contrast, are structurally rather uniform. Until very

recently, little attention was paid to the possibility that

tierra firme forests might also represent ecologically

different forest types. However, now there is increasing

evidence that they do consist of a heterogeneous mosaic

of floristic communities, and that the floristic differences

between sites are related to differences in edaphic site

conditions, especially soil nutrient content (Duivenvoor-

den, 1995; Duque et al., 2002; Gentry, 1988; Phillips et

al., 2003; Ruokolainen et al., 1997; Ruokolainen &
ent 97 (2005) 39 – 51
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Tuomisto, 1998; Tuomisto et al., 1995, 2003a,b,c;

Vormisto et al., 2000).

Consequently, Amazonian tierra firme forests can be

classified to different site types, each of which has a more or

less characteristic floristic composition. In boreal and

temperate forests, such site types are recognised in the field

using indicator species (Cajander, 1926; Ellenberg, 1988)

whose edaphic requirements are sufficiently well known. It

has recently been suggested that pteridophytes (ferns and

fern allies) could be used as forest site type indicators in

Amazonian rain forests, and indeed it has been found that

the floristic patterns of pteridophytes are highly correlated

with those of other plant groups (Ruokolainen et al., 1997;

Ruokolainen & Tuomisto, 1998; Tuomisto et al., 1995;

Vormisto et al., 2000). This linkage between soils, terrestrial

pteridophytes and canopy plants suggests that it may be

possible to use remotely sensed data to separate rain forest

types that have been recognized based on their indicator

species composition.

Floristic and edaphic heterogeneity is important for land-

use planning and conservation in Amazonian forests and

may also be relevant for many other organisms beside

plants. For example, herbivorous animals depend on the

quality and quantity of plant resources available in the

habitat and thus site productivity and floristic composition

may influence their abundance and distribution. Therefore

broad-scale vegetation surveys have potentially wide

applications in resource management and conservation as

well as in basic ecological research in primary rain forests.

However, vegetation surveys in tropical forests are more

demanding and time-consuming than in temperate forests

because plant species diversity is extremely high, their

taxonomy is poorly known, and remote areas are logistically

difficult to work in. As a result, it is rarely feasible to collect

field data that cover the area of interest sufficiently and thus

interpolation must be made between widely scattered field

study points. Environmental reference maps or other

ancillary data that could help in vegetation mapping and

spatial interpolation are only rarely available, especially at a

relevant spatial scale. Remote sensing data is often the best

if not the only available source of such information (Moran

& Brondizio, 1994; Tuomisto, 1998; Tuomisto et al.,

2003c). For example, in our study area in Peruvian

Amazonia the only available thematic map providing

reasonable detail is a geological map that is based on very

limited field-verification (Sanchez et al., 1999).

Although perennial cloud cover often poses problems for

passive remote sensing in tropical areas (Asner, 2001),

remotely sensed data have been successfully applied in

separating areas of dense forest from degraded forest and

non-forest land cover types (e.g., Achard et al., 2001;

Laporte et al., 1995; Skole & Tucker, 1993). Seasonally

inundated forests and swamps have also been successfully

distinguished from non-inundated forests (de Grandi et al.,

2000; Kalliola et al., 1992; Lobo & Gullison, 1998; Podest

& Saatchi, 2002; Tuomisto et al., 1994) and some of the
forest types traditionally recognized by local tribes have

been found to be distinct in satellite images (Shepard et al.,

2004).

Nevertheless, the majority of Amazonia (e.g., more than

80% of Peruvian Amazonia; Salo et al., 1986) is covered by

relatively uniform-looking tierra firme forests. The differ-

ences between tierra firme forest types that grow on

different soil types have been considered to be too subtle

to be discernible by remote sensing. For example, several

studies using Landsat TM data to classify tierra firme forests

growing on sand and clay soils concluded that it was not

possible to separate them (Foody & Hill, 1996; Hill, 1999;

Hill & Foody, 1994). In spite of this, our earlier studies have

linked the variation visible in Landsat satellite imagery with

floristic patterns and environmental heterogeneity in Ama-

zonian tierra firme forests (Thessler et al., in press;

Tuomisto et al., 1995, 2003a,b), although it has also been

suggested that the vegetation patterns visible in satellite

images may be related to forest dynamics, such as pest

outbreaks, disturbance or dispersal limitation, rather than to

edaphic variation (Condit, 1996).

Numerous factors affect the potential success of forest

classification using satellite images. One challenge is to

select the best image features to be used as the basis of the

classification. For the purposes of vegetation mapping, the

near and mid infrared bands contain more relevant

information than the visible bands (e.g., Singh, 1987;

Thenkabail et al., 2004), but the most efficient features

vary from one application to another. The spatial resolution

of the study is also critical for classification success. The

size of the pixel windows used should be selected relative to

the size of the forest patches that are to be mapped. The

spatial scales of vegetation patterns in Amazonian forests

range from local tree fall gaps (tens of meters) through

topographic hill–valley patterns (hundreds of meters) to

landscape-wide patches of different forest types (kilometres)

(Tuomisto et al., 1995, 2003a,b). Local heterogeneity within

forest types can be considered noise in landscape-scale

vegetation mapping and consequently more accurate clas-

sifications have been obtained when larger pixel windows

(e.g., Hill & Foody, 1994; Rajaniemi et al., 2005; Tuomisto

et al., 2003a, b) or segments (Hill, 1999; Lobo & Gullison,

1998) have been used. Use of pixel windows or segments

also decreases the effect of misregistration of field plots and

errors in satellite image rectification, both of which can

cause classification error (Foody, 2002; Powell et al., 2004).

However, if the spatial resolution of the study is too coarse,

the classification can be blurred by high variation within

pixel windows, as one window may include several

vegetation types.

The number and distinctness of the forest classes to be

mapped partly determine how accurate a classification can

be achieved. In continuous tierra firme forest, easily

recognizable limits between forest types are rare. This

makes the allocation of sites to discrete vegetation classes

difficult and often quite subjective, and therefore care
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should be taken in defining the forest classes to be mapped

(Foody, 2002; Nagendra, 2001). The availability of floristic

field data helps in this task.

We have previously conducted a landscape-level vegeta-

tion classification in Peruvian Amazonia for the purposes of

wildlife habitat studies (Salovaara et al., 2004). Eight 8-km

long line transects were inventoried for their pteridophyte

flora. On the basis of these floristic data, the forests were

divided into four main types: inundated forests, terrace

forests, Pebas formation forests and intermediate tierra firme

forests. The pteridophyte species composition in the three

non-inundated forest types indicated that they differ in soil

fertility: terrace forests have clearly poorer soils than the two

other forest types and Pebas formation forests have richer

soils than intermediate tierra firme forests (Salovaara et al.,

2004). Since tree species composition reacts to these kinds of

soil differences (e.g., Clark et al., 1998; Duque et al., 2002;

Phillips et al., 2003; Ruokolainen et al., 1997), the spectral

characteristics of the forest are expected to do so as well,

because they are mostly determined by the forest canopy.

A mammal census was conducted simultaneously with

the vegetation survey in the eight floristic transects and in an

additional four transects that lack floristic field data in order

to compare the structure of mammal communities between
Fig. 1. Color composite (bands 4, 5 and 7 allocated to red, green and blue, respec

Peruvian Amazonia. Each square in the line transects represents one 500�400 m

forests in black, terrace forests in dark gray and Pebas formation/intermediate tier

transects 4–8 and 10–12 was based on floristic data (Salovaara et al., 2004), where

remotely sensed data. The red square in the reference map indicates the location
forest types. Obtaining a vegetation classification for all

twelve transects is indispensable for the animal ecological

study. In the present study the objective was to test whether

a Landsat ETM+ satellite image can be used to extend the

vegetation classification to the additional four transects and,

if so, to carry out the classification. Although there is an

immediate practical need for the classification, it is also of

more general scientific interest to test how accurately the

forest types recognized on the basis of floristic data can be

detected from remotely-sensed data.
2. Material and methods

2.1. Study area

Fieldwork was conducted in an extensive (800 km2)

uninhabited area of primary rain forest in northeastern

Peruvian Amazonia along the Yavarı́–Mirı́n river (Fig. 1).

The Yavarı́–Mirı́n is a tributary of the Yavarı́ river, which

forms the border between Peru and Brazil. The area is within

the proposed Yavarı́ conservation unit and has extremely

high species diversity (Pitman et al., 2003 and references

therein). Although restricted selective logging and other
tively) of the Landsat ETM+ satellite image covering the study area in NE

sampling unit. The three forest classes are shown as follows: inundated

ra firme forests in light gray. Classification of the 500-m sampling units in

as transects 1, 2, 3 and 9 were classified in the present study with the help of

of the study area.
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small-scale extractive activities take place in the area, they

have not caused visible changes in the forest structure.

Elevation in the area ranges from 100 m to ca 180 m

above sea level and terrain varies from practically flat to

hilly. Most of the river basin is covered by non-inundated

tierra firme forest. Areas close to the Yavarı́–Mirı́n river

channel are inundated seasonally and the floodplains of the

major creeks sporadically after heavy rains. Palm swamps

dominated by Mauritia flexuosa L. f. are patchily distrib-

uted throughout the landscape, mainly close to the river and

major creeks. The vegetation and geomorphology of the

area are described in more detail in Salovaara et al. (2004).

The nearest weather station is in the city of Iquitos, ca 150

km northwest of the study area. There the mean monthly

temperature varies between 25 and 27 -C and mean annual

precipitation is about 3100 mm. The highest long-term

mean monthly precipitation is in March (350 mm) and the

lowest in June (180 mm), but years when the driest month

receives less than 100 mm of rain are not uncommon

(Marengo, 1998).

2.2. Data

Twelve 8-km long transects (Fig. 1) were cleared in the

study area to allow a floristic survey and census of large-

bodied herbivorous mammals (ungulates, primates, rodents)

to be conducted. A vegetation classification for eight of the

transects was produced with the help of floristic data

(pteridophyte species abundances) collected in contiguous

2-m wide and 100-m long sampling units along the transects

in March–April 2002 (Salovaara et al., 2004). The field

work had to be ended prematurely because of logistical

difficulties, leaving four transects (numbered 1, 2, 3 and 9 in

Fig. 1) without floristic data. The present paper reports the

use of satellite-derived data to assign the vegetation along

these four transects to the forest classes recognized by

Salovaara et al. (2004).

A Landsat Enhanced Thematic Mapper (ETM+) image

covering the study area (path 005, row 63, acquisition date

25 June 2001) was used in the analysis. The image was

obtained as geometrically and radiometrically corrected

(level 1G) data in digital number (DN) values. The image

was rectified using 1st order polynomial rectification.

Ground control points (GCPs) were obtained in the field

with a hand-held Global Positioning System (Garmin GPS

12) and from reference points read from a map that was

based on Landsat MSS (Multispectral Scanner) images

(IFG, 1984). Although the map manufacturer reports a

relatively low spatial accuracy (125 m) for these maps, they

have been useful in our earlier applications. A total of 12

GCPs were used as control points and additional four as

check points, whose root mean square error was <1 pixel, or

less than 30 m. River channels and oxbow lakes are the only

usable landmarks in the region and a somewhat larger scene

than the one shown in Fig. 1 was used for rectification to

allow more even dispersion of GCPs.
All transects were georeferenced in the field by taking

GPS readings at 500-m intervals. To improve the accuracy

of the GPS data, a minimum of two repeated measurements

were taken on different dates at each point and averaged.

When the transects were overlaid on the Landsat ETM+

their locations were deemed sufficiently accurate (<90 m

error) by visual estimation.

No topographical maps covering the study area exist, but

a digital elevation model of the Shuttle Radar Topography

Mission (SRTM DEM) is freely available (http://srtm.usgs.

gov/) and was acquired as unfinished data in 2003. The

SRTM DEM is based on the C-band radar data and has a

horizontal resolution of 90 m. However, the study area is

relatively flat and has only minor topographical variation, so

topographical correction at this spatial resolution cannot be

accomplished using SRTM data. We also tested whether the

radiance values of the satellite image were correlated with

incidence angle calculated using the DEM and known sun

elevation, but no statistically significant correlation existed,

and consequently topographical correction was not deemed

necessary. No atmospheric correction was applied to the

Landsat ETM+ image, because only one scene was used and

the lack of atmospheric data for the time of image

acquisition would have prevented reliable within-scene

correction (Song et al., 2001).

Two different window sizes were used to extract digital

number (DN) values from the satellite image. A balance

needed to be found between solving two problems: larger

pixel windows are more often mixtures of more than one

forest type, but smaller windows are more severely affected

by local noise. The smaller windows used here were 5�5

pixels (150�150 m) in size, and the larger windows ca

12�15 pixels (360�450 m). A window size 5�5 was

selected because smaller pixel windows (3�3 and single

pixels) were found to perform poorly by Hill & Foody

(1994), and the larger window size is comparable to that used

by Tuomisto et al. (2003b). The smaller pixel windows were

used in analyses including the 200-m long floristic sampling

units from the transects and the larger windows in analyses

of the 500-m field sampling units. The image sampling units

were made slightly shorter than the corresponding field

sampling units in order to avoid including the same image

pixels in two adjoining pixel windows.

The mean and standard deviation of the DN values within

the pixel windows were extracted from the Landsat ETM+

image for bands 2, 4, 5 and 7. The ratio of bands 4 and 5 was

also extracted. Bands 1 and 3 were not used, because they

had either pronounced striping (band 1) or coherent noise

(band 3), which originate from the Landsat detector. It was

not possible to replace the faulty image, because no other

cloud-free Landsat ETM+ scenes were available from the

time period when the field study was conducted. Thermal

band 6 was also excluded and the river channel was masked

out to exclude pixels representing open water.

The DN values inside the 5�5 pixel windows were

obtained by filtering. A moving window kernel of 5�5

http://srtm.usgs.gov/
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pixels was applied over the image and the DN value of the

pixel at the mid-point of each 200-m long transect sampling

unit was used as the image data corresponding to that

sampling unit. The 12�15 pixel windows were delineated

manually on the image so that the long axis of each pixel

window was aligned with and centered on the correspond-

ing 500-m transect sampling unit (Fig. 1). Elevation data

were extracted from the SRTM DEM. The value of the pixel

containing the mid-point of each 200-m sampling unit was

used as the elevation data corresponding to that sampling

unit. For the 500-m sampling units, the mean and standard

deviation of elevation were extracted using the same pixel

window size as in the case of the DN values (360�450 m,

corresponding to 4�5 pixels in the DEM).
3. Data analyses

3.1. Mantel tests

All the analyses were run separately using the 200-m and

500-m sampling units (N =317 for the 200-m sampling

units, N =127 for the 500-m sampling units). Mantel tests

were run to analyze how well the patterns in the digital

numbers of the satellite image and in elevation correlated

with the floristic patterns observed in the field. The Mantel

test computes a correlation coefficient (Mantel’s r) between

two resemblance matrices, in the present case a floristic

resemblance matrix and a satellite-derived resemblance

matrix. Mantel’s r is similar to Pearson’s product–moment

correlation, except for the important difference that corre-

lations are not calculated between the original variables, but

between resemblance matrices based on these variables.

Resemblance matrices consist of pair-wise comparisons of

all sampling units using a resemblance measure that is

appropriate for the data at hand (Legendre & Legendre,

1998). The statistical significance of the Mantel correlation

coefficient is estimated with a Monte Carlo permutation test;

in the present case 999 permutations were used to test for

significance at the p <0.001 level.

The floristic resemblance matrices were calculated using

the Bray–Curtis index, which is a measure of the degree of

difference in species abundances between two sites (Legen-

dre & Legendre, 1998):

D x1; x2ð Þ ¼

Xp

j¼1

jy1j � y2jj

Xp

j¼1

jy1j þ y2jj
; where ð1Þ
xi=sampling unit i

yij =abundance of species j in sampling unit i

p =total number of species.

Several Euclidean distance matrices were constructed

using the spectral features and elevation data, i.e., the means
and standard deviations of DN values, ratio of bands 4 and

5, and elevation in the pixel windows. Each variable was

used on its own to construct a Euclidean distance matrix and

additional Euclidean distance matrices were constructed

using a combination of several variables. In the latter case,

the combination of variables to be included was selected

using multiple regression on distance matrices with back-

ward elimination and the individual variables were stand-

ardized to give them equal weight before computing the

distances.

In the multiple regression on distance matrices, the

dependent matrix was the floristic distance matrix, and the

independent matrices were the Euclidean distance matrices

based on each spectral and elevation feature separately.

Initially, all independent distance matrices were included. At

each iteration of the backward elimination, the independent

matrix with the least significant coefficient of partial

determination was excluded, until the coefficients of all

matrices remaining in the model were statistically signifi-

cant at the p <0.05 level after Bonferroni correction. The

statistical significances were estimated by Monte Carlo

permutation, using either 999 permutations (in the case of

500-m sampling units) or 99 permutations (in the case of

200-m sampling units).
4. Discriminant analysis

Discriminant analysis was used to build a discriminant

function, which consists of a linear combination of

explanatory variables (in this case, spectral features and

elevation) that best discriminates among a number of

predefined classes (in this case, the forest types of Salovaara

et al., 2004). The parameters of the model are estimated on

the basis of a training data set consisting of field-verified

sampling units with known class membership (the eight

classified floristic transects). The resultant model can then

be used to predict class membership for unvisited sampling

units (the four transects lacking floristic data) and the entire

study area (Legendre & Legendre, 1998).

The training data set consisted of the existing floristic

classification of the 100-m long vegetation sampling units

from the eight transects that were inventoried for pterido-

phytes (Salovaara et al., 2004). Because the size of the

sampling units was different between the vegetation and

image data, some adjustments were necessary. When a 500-

m image sampling unit contained more than one forest type,

it was allocated to the forest type to which most of the

corresponding 100-m vegetation sampling units belonged.

In the case of ties in the 200-m image sampling units,

preference was given to the forest type that was rarer in the

entire data set. Consequently, 2% of the 200-m sampling

units and 9% of the 500-m sampling units were mixed pixel

windows that contained more than one forest type. This can

increase misclassification (Smith et al., 2003), so the

percentage of misclassified sampling units was calculated
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separately for the mixed and the non-mixed image sampling

units.

The 500-m section closest to the river on transect 4 had

been classified as intermediate tierra firme forest on the

basis of floristic data (Salovaara et al., 2004), but this was

clearly a misclassification, because the area was observed to

be inundated in the rainy season. This error could distort the

discriminant model and cause false misclassifications,

especially because the number of sampling units belonging

to the inundated forest class was low. Therefore, the transect

section in question was transferred to the inundated forest

class prior to the following analyses. The main results

obtained with the uncorrected data are also reported for the

sake of comparison.

A total of eleven spectral and elevation features were

available for model building (Table 1), so the first step in the

analysis was to select the combination of features that would

give the best classification accuracy with the fewest

features. This was done by a stepwise discriminant analysis

using backward elimination. At each step, the feature that

contributed least to the discriminatory power of the model

was removed, until only one feature remained. Discrim-

inatory power was measured with Wilks’ Lambda, which is

the spectral (and elevation) variance among the sampling

units that is not explained by the model (Legendre &

Legendre, 1998). Every step produced one feature combi-

nation that was validated by testing how well it classified

the sampling units whose class memberships were already

known. The classification accuracies obtained in this

manner are unrealistically high because the same sampling

units were used for both model building and testing, but

their purpose was only to help in selecting the optimal

model for each sampling unit size.

The feature combination with the highest classification

accuracy was then selected; when two or more models

performed equally well, the one with the fewest features was
Table 1

Selection of feature combinations and corresponding classification accuracy

using the entire data set for building and validating the discriminant

function

200-m sampling units 500-m sampling units

Number of

sampling units

317 127

Included features m2, m4, m5, m7, sd2,

sd4, sd5, sd7, m4/m5,

elevation

m2, m4, m5, m7, sd2,

sd4, sd5, sd7, m4 /m5,

elevation, sd of elevation

Selected feature

combination

Elevation, m7, m4/m5,

m5

m7, m4, m5, elevation,

sd4, sd5, sd2, m2

Classification

accuracy

73.8% 92.1%

Elevation was obtained from the SRTM DEM and DN values from a

Landsat ETM+ satellite image. The numbers show which wavelength bands

were used: m stands for mean and sd for the standard deviation of the DN

values of the band in question. Values were extracted from pixel windows

of 150�150 m for the 200-m sampling units and 360�450 m for the 500-

m sampling units. Total degrees of freedom were n�1, within classes n�3

and between classes 2.
selected. Once the best feature combination had been found,

the accuracy of the corresponding discriminant model was

assessed by 8-fold cross-validation. Seven of the field-

verified transects were used to build the discriminant model

and the remaining transect was used as the test data set.

Each of the field-verified transects was used as the test data

set in turn and classification accuracy was derived as the

percentage of correctly classified sampling units across all

the eight runs. This method of cross validation was used

because the ultimate purpose of the discriminant analysis

was to classify the sampling units of the uninventoried

transects and a realistic estimate of classification accuracy

was needed for a situation where the nearest field-verified

sampling units are several kilometres away.

Classification results and accuracies were summarized in

error matrices and by Kappa values. An error matrix shows

the number of correctly classified image sampling units in

the diagonal and the number of image sampling units that

were erroneously either included in (lower triangle) or

excluded from (upper triangle) each class. Producer’s

accuracy indicates the percentage of image sampling units

that were assigned to the correct class. User’s accuracy gives

the percentage of image sampling units assigned to a certain

class that actually belong to that class according to the

floristic classification.

The kappa coefficient (j) was calculated from the error

matrix Eq. (2). Kappa indicates to what extent classification

accuracy is due to true agreement of the field data and the

classified data, and to what extent it could have been

achieved by chance (Lillesand et al., 2004). Its value varies

between 0 and 1 and a value of 0.5 means that there is 50%

better agreement than expected by chance alone.

j ¼
N

Xr

i¼1

X ii �
Xr

i¼1

xiþ4xþið Þ

N2 �
Xr

i¼1

xiþ4xþið Þ
; where ð2Þ

r =number of the rows/columns in the error matrix

xii =number of observations in the cell ii (row i and

column i)

xi+ =marginal totals of row i

x+ i =marginal totals of column i

N=total number of observations.

Once the model building, cross validation and accuracy

evaluation of the discriminant models were completed for

the 200-m and 500-m image sampling units, the models

were applied to obtain classifications of transects 1–3 and 9.

Classification of the entire study area was only produced

using the larger sampling unit size.

For the classification of the entire study area the band

and elevation layers that produced the highest classification

accuracy were filtered by a mean and/or standard deviation
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kernel of 12�15 pixels and the pixel data were imported

to the discriminant model. The data from the eight

classified transects was then used as a training data set

for predicting the forest classes for the filtered image

pixels. The produced forest classification was filtered with

a majority kernel of 5�5 pixels. Since the field sampling

may not have covered all of the variation present in the

study area, the pixels with values outside the sampled

ranges of spectral and elevational features were removed

from the classification. This was done by plotting the DN

values of a pair of spectral features for all the pixel

windows. A convex object (i.e., a polygon formed as if a

string is stretched around the field-verified pixels) was then

drawn around the field-verified pixels and all pixel

windows that were outside the convex object were masked

out from the image (see Thessler et al., in press). This was

repeated for all pairs of spectral and elevational features.

The excluded areas were presented as unclassified pixels in

the produced map. Preprocessing of the Landsat image and

GPS data was done using the Erdas Imagine 8.6 and

ArcGIS programs. Resemblance matrices and Mantel tests

were computed with Le Progiciel R (Casgrain & Legendre,

2001), and multiple regressions on distance matrices were

run with Permute!. Both programs are available through

the www site <http://www.bio.umontreal.ca/legendre/

indexEnglish.html>. The discriminant analyses were run

in the SAS 8.2 (SAS Institute Inc., 1999).
Table 2

Matrix correlations as measured by a Mantel test between floristic distances

and distances based on remote sensing data (the DN values of a Landsat

ETM+ satellite image and a digital elevation model) in NE Peruvian

Amazonia

Spectral or elevation features Mantel’s r

500-m sampling

units

200-m sampling

units

m2 0.28*** 0.11***

m4 0.25*** 0.14***

m5 0.24*** 0.14***

m7 0.33*** 0.18***

sd2 0.12** 0.00

sd4 0.21*** 0.05*

sd5 0.15** 0.11**

sd7 0.05 0.02

Ratio of bands 4 and 5 0.23*** 0.17***

Elevation 0.26*** 0.24***

sd of elevation 0.22*** –

m2, m4, m5, m7, elevation,

sd of elevation

0.47*** –

m4, m7, sd5, elevation – 0.30***

Floristic distances were based on the Bray–Curtis index. Spectral and

elevational distances were based on the Euclidean distance computed from

the mean (m) or standard deviation (sd) of the DN values of one or more

ETM+ bands and/or elevation within each pixel window (150�150 m for

the 200-m sampling units, 360�450 m for the 500-m sampling units).

* P <0.05.

** P <0.01.

*** P <0.001.
5. Results

5.1. Simplifying the vegetation classification

The original classification of Salovaara et al. (2004)

produced four main forest classes separated by floristic

characteristics: inundated forests, terrace forests, Pebas

formation forests, and intermediate tierra firme forests. All

the current analyses were first run using these four classes,

but it turned out that Pebas formation forests and inter-

mediate tierra firme forests were difficult to separate from

each other on the basis of remotely sensed data. The overall

classification accuracy for the four-class classification was

66% with the 500-m sampling units and even lower (49%)

with the 200-m sampling units.

The intermediate forests covered 16% of the area

sampled in the field and were mainly found in small patches

surrounded by Pebas formation forest. As these two forest

types were also floristically more similar to each other than

to the other forest types, it seemed appropriate to combine

them. All the analyses reported below are, therefore, based

on a three-class classification:

1) inundated forests; including both river floodplain and

swamp forests

2) terrace forests of tierra firme; non-inundated forests

growing on relatively nutrient-poor loamy soils
3) Pebas formation/intermediate tierra firme forests; non-

inundated forests growing on relatively nutrient-rich

clayey to loamy soils.

5.2. Mantel tests

The results of the Mantel tests between the floristic

distance matrices and the corresponding image feature

distance matrices are shown in Table 2. Mantel correlations

were calculated both using each image feature individually

and using those feature combinations that were retained in

the multiple regression on distance matrices after backward

elimination. Of the individual spectral features, the mean

DN values of band 7 showed the highest Mantel correlation

with both sampling unit sizes. The mean DN values of the

other bands also showed relatively high correlation coef-

ficients, as did elevation and the ratio of bands 4 and 5. The

correlation coefficients obtained with the 200-m sampling

units were invariably, and usually considerably, lower than

those obtained with the 500-m sampling units. Those

distance matrices that combined several features resulted

in the highest correlation coefficients: 0.47 and 0.30 with

the 500 and 200-m sampling units, respectively.

5.3. Building of discriminant models

Table 1 presents the best feature combinations selected

by stepwise discriminant analysis using backward elimi-
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Table 4

Error matrix of the classification using spectral and elevation features to

assign the 200-m sampling units (N =317) to floristically defined forest

types in NE Peruvian Amazonia

Actual class Predicted class Producer’s

In Te P/I Row total
accuracy (%)

Inundated forest 23 3 7 33 69.7

Terrace forest 2 18 18 38 47.4

Pebas formation/

intermediate tierra

firme forest

13 50 183 246 74.4

Column total 38 71 208 317

User’s accuracy (%) 60.5 25.4 88.0

The diagonal shows the number of correctly classified sample units for each

class. Producer’s accuracy is the percentage of the sampling units predicted

to belong to the correct class, and user’s accuracy is the percentage of the

sampling units predicted to belong to a particular class that actually belong

to that class. The best linear discriminant function based on the feature

combination indicated in Table 1 was used. The error matrix was calculated

by summing the classification results of eight separate runs where each of

the transects was used as a test data set in turn.
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nation and the overall classification accuracy when these

features were used to classify sampling units into floristi-

cally defined forest types. The same features were used in

the 8-fold cross-validation. In the cross validation, classi-

fication accuracy varied considerably between sampling unit

sizes and depending on which transect was used as the test

data set (Table 3). For the 200-m sampling units, accuracy

ranged between 53% and 95% (overall accuracy 71%) and

for the 500-m sampling units between 63% and 100%

(overall accuracy 85%). The Kappa coefficient was 0.35 in

the classification of the 200-m sampling units and reached

0.62 in the classification of the 500-m sampling units.

The error matrix of the 200-m sampling units shows a

low classification accuracy for the terrace forest class:

producer’s accuracy was 47% and user’s accuracy 25%

(Table 4). Terrace forest sampling units were often

erroneously classified to the Pebas formation/intermediate

tierra firme class. Pebas formation/intermediate tierra firme

forest showed the highest producer’s and user’s accuracy

values (74% and 88%, respectively) and inundated forests

showed intermediate values (70% and 61%, respectively).

A higher classification accuracy was obtained when

using the 500-m sampling units (Table 5). For the terrace

forest class, producer’s accuracy was 75% and user’s

accuracy 48%. Pebas formation/intermediate tierra firme

forest again showed the highest producer’s and user’s

accuracy values (88% and 95%, respectively) and inun-

dated forests showed intermediate values (73% and 89%,

respectively).

The total number of 500-m sampling units was 127 and

11 of these were mixed pixel windows containing two forest

types. Of the 11 mixed sampling units, four (36%) were

misclassified, whereas 15% of the 116 sampling units

located in the forest class interior were misclassified. There

were seven mixed plots among the 317 200-m sampling

units, and 57% of these were misclassified, whereas 29% of

the sampling units that included one forest type were

misclassified.

When the 500-m section closest to the river in transect 4

was not transferred to the inundated forest class but was

retained as Pebas formation/intermediate forest, the classi-

fication accuracies were consistently lower than with the

corrected data set. In case of the 500-m sampling units, the
Table 3

Eight-fold crossvalidation of the discriminant models when using Landsat

ETM+ DN values and SRTM DEM elevation features to classify sampling

units to floristically defined forest types in NE Peruvian Amazonia

200-m sampling units 500-m sampling units

Overall accuracy 70.7% 85.0%

Range 52.5–95.0% 62.5–100.0%

Standard deviation 16.4 14.5

Kappa coefficient 0.35 0.62

The selected feature combinations in Table 1 were used in the analyses.

Each one of the eight floristic transects was used as the test data set in turn

and the table summarizes the results for the eight runs. Corresponding error

matrices are shown in Tables 4 and 5.
selected features were the same as in the analyses described

above, but classification accuracy was slightly lower.

Overall accuracy decreased from 85% to 84%. Producer’s

accuracy of inundated forest decreased from 73% to 60%,

whereas in terrace forest it was 81% and in intermediate/

tierra firme forests 86%. For these same forest types the

user’s accuracies were 67%, 50% and 95%, respectively.

With the uncorrected 200-m data the feature m4/m5 was

replaced by m4 in the model and the overall accuracy was

68%, as compared to 71% with the corrected data. Thus, the

corrected data were used also in the subsequent classifica-

tions of the entire study area and the four transects that

lacked floristic data.

5.4. Classification of four transects and the study area

Overall, in the classification of transects 1–3 and 9,

which lacked floristic field data, the results for both

sampling unit sizes agreed relatively well. Only 20% of

the 200-m sampling units were assigned to a different forest
Table 5

Error matrix of the classification using spectral and elevation features to

assign 500-m sampling units (N =127) to floristically defined forest types in

NE Peruvian Amazonia

Actual class Predicted class Producer’s

In Te P/I Row total
accuracy (%)

Inundated forest 8 2 1 11 72.7

Terrace forest 0 12 4 16 75.0

Pebas formation/

intermediate tierra

firme forest

1 11 88 100 88.0

Column total 9 25 93 127

User’s accuracy (%) 88.9 48.0 94.6

See Table 4 for more detailed explanation.



Fig. 2. Classification of the four transects lacking floristic field data into three vegetation types in NE Peruvian Amazonia. The results are shown separately for

the 200- and 500-m sampling units. The classification is based on a linear discriminant model using the best combination of spectral and elevation features for

each sampling unit size, as indicated in Table 1. The results for the 200-m sampling units are shown above those of the 500-m sampling units. The sampling

units assigned to the three forest types are shown as follows: inundated forests in black, terrace forests in dark gray and Pebas formation/intermediate tierra

firme forests in light gray. The first 200-m unit of transect 1 was covered by the river mask and was excluded from the analyses.
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class than that of the corresponding 500-m unit (Fig. 2). In

the case of these four transects, classification accuracy

cannot be formally estimated because neither field data nor

existing vegetation maps are available. However, the

accuracy is probably close to that obtained in the model

validation for the eight field-inventoried transects when

each transect was excluded in turn. This yielded an overall

classification accuracy of 85% and Kappa value of 0.62 for

the 500-m sampling units.

Because less accurate results were obtained in all

analyses for the 200-m sampling units than for the 500-m

units, the latter sampling unit size can be considered

preferable for use in future wildlife studies. In Fig. 1 the

classified 500-m sampling units are placed on top of the
Fig. 3. Forest classification of the Landsat ETM+ satellite image shown in Fig. 1

(transects 4–8 and 10–12) or by remotely-sensed data (transects 1–3 and 9) are

black, terrace forest in dark gray and Pebas formation/intermediate forest in light gr

their spectral and elevational features were outside the ranges covered by field sa
Landsat ETM+ color composite. It is apparent that the

obtained forest classification corresponds well to the

visually observable patterns in the satellite image. Large

swamp forests (in a reddish tone) were all correctly

classified to inundated forest, as were river floodplain

forests, even though the latter are less clearly visible in the

image. An abrupt transition from darker green terrace forest

to lighter green Pebas formation/intermediate tierra firme

forest is visible in transects 3 and 11 and somewhat less

clear in transects 1 and 7.

The forest classification map for the entire area is

presented in Fig. 3. Generally, the classification results

agree rather well with the patterns seen in the Landsat color

composite in Fig. 1. The inundated forests are concentrated
. The line transects whose forest classes were defined by floristic field data

overlaid. The three forest classes are shown as follows: inundated forest in

ay. White areas are either open water or areas that were unclassified because

mpling.
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along the river and major creeks. The terrace forests are

concentrated on the southern side of the river, whereas

Pebas forests/intermediate tierra firme forests are more

common on the opposite side of the river. Only 4% of the

study area remained unclassified, because the values of the

spectral and elevational features were outside the ranges

covered by field sampling. These areas seem to correspond

to the light-colored areas in the Landsat image (Fig. 1) and

probably represent areas of open vegetation, e.g., large gaps

produced by strong storms.
6. Discussion

Both the Mantel tests and the discriminant analyses gave

clearly better results with the 500-m sampling units than

with the 200-m units. Increasing the size of the sampling

unit increases the risk that more than one vegetation types

exist within it. It was indeed confirmed that the sampling

units located at transition between two forest types were

more often misclassified than those in the forest class

interior. However, the classification error caused by this

tendency was more than compensated for by the ability of

the larger sampling units to dampen the effect of local noise

(e.g., tree fall gaps). These results are well in line with the

study of Hill & Foody (1994), who concluded that low-pass

filtering increased the separability of Amazonian forest

types.

The classification accuracy achieved in the present study

was higher than we had expected, considering the fact that

the forests were structurally rather similar, and that many

previous studies have obtained low accuracies. For the 500-

m sampling units the overall classification accuracy of the

final discriminant model was 85% and the lowest producer’s

accuracy for an individual forest class was 73%. There are

no generally accepted limits on how accurate a classification

should be in order to qualify as reliable, but usually an

overall accuracy exceeding 85% is considered reasonable,

often with the additional criterion that the accuracy should

not be lower than 70% for any class (Foody, 2002;

Thomlinson et al., 1999; Smits et al., 1999). These

recommendations are meant for general use in remote-

sensing applications, which in most cases intend to separate

structurally distinct classes, e.g., forest and open field, from

each other.

The user’s accuracy for the terrace forest class was only

48%, indicating that half of the sampling units assigned to

that class from transects 1, 2, 3 and 9 (Fig. 2) could in fact

belong to another forest type, most probably to the Pebas

formation/intermediate class. There were, indeed, three 500-

m sampling units in the middle part of transect 1 and two

units in the latter part of transect 3 that based on field

observations most closely resembled the Pebas formation/

intermediate forest class. Nonetheless, they were assigned to

the terrace forest class in the discriminant analysis. Except

for these five sampling units, the classification of the four
transects conformed well both to the general vegetation

patterns observed in the field and to the patterns visible in

the Landsat ETM+ image.

It is not straightforward to compare the present results to

those of earlier studies because the numbers and definitions

of the recognized vegetation classes are unique in each

study. When more vegetation classes are recognized, the

probability of erroneous class assignments increases. The

present study only included three forest classes. On the other

hand, vegetation classes that are structurally clearly different

are intrinsically easier to separate than structurally similar

ones. All of the forest types in this study were structurally

quite homogeneous, closed-canopy rain forest, even though

there is some structural heterogeneity within the inundated

forests. The spatial scale and sampling design also vary

among studies, but unfortunately information on sampling

design or measures of accuracy are not always provided,

making comparisons with other studies difficult. With these

reservations in mind, some comparisons can be attempted.

Few other studies have tried to separate floristically

defined forest types within Amazonian primary tierra firme

forests. The only other studies that employed forest classes

comparable to ours (tierra firme on nutrient-poor clay soils

vs. moist sand or sandy clay soils) concluded that these

forest types could not be separated from Landsat TM images

(Foody & Hill, 1996; Hill, 1999; Hill & Foody, 1994).

However, tierra firme forests on sand or sandy clay could

often be identified visually (Foody & Hill, 1996), which was

also the case for terrace forests and Pebas formation/

intermediate tierra firme forests in our study. Foody &

Cutler (2003) achieved a high classification accuracy (96%)

for nine floristically defined forest classes in lowland

dipterocarp forests in Borneo when using Landsat TM data.

However, parts of the study area were heavily impacted by

logging, which could cause the classes to be structurally and

not just floristically dissimilar. Furthermore, no independent

test data was used in accuracy assessment.

Separation of Amazonian inundated and tierra firme

forests has been very successful. Lobo & Gullison (1998)

were able to classify seasonally flooded lowland forests and

seasonal evergreen dense forests 100% correctly using a

Landsat TM satellite image in Bolivia and reached an

overall classification accuracy of 94–98% with eight land

cover types (water, swamps and several savanna and

tropical forest classes). Hess et al. (2003) mapped inundated

and non-inundated forests with 63–90% producer’s and

user’s accuracies in the central Amazon basin from dual-

season radar imagery.

Successional stages of moist tropical forests have also

been classified quite accurately. Lu et al. (2003) achieved an

overall accuracy of 78% (range of producer’s accuracy 58–

99%) when classifying three successional and one mature

forest class in Brazilian Amazonia. Thenkabail et al. (2004)

discriminated fallows and successional stages of tall forest

(eight classes in total) in Cameroon with an accuracy of

96% using hyperspectral Hyperion images, but classifica-
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tion accuracy was only 42% when a Landsat ETM+ image

was used. Unfortunately their validation method was not

reported. General classes of non-forest, mature forest and

regenerating forest in Cameroon were discriminated with a

64–79% accuracy using low resolution NOAA AVHRR

data (Lucas et al., 2000).

Even higher accuracies have been achieved in tropical

areas when non-forest land cover types have been included.

Vieira et al. (2003) reported an overall accuracy of 81%

(range 60–100%) in a classification of seven secondary

forest, cropland and pasture classes using a Landsat ETM+

-satellite image in Brazilian Amazonia. Trisurat et al.

(2000) used supervised classification of Landsat TM data

to discriminate grassland and six forest classes (e.g., mixed

deciduous, dry evergreen and tropical rain forest) with an

overall accuracy of 79% (range 50–100%) in Thailand.

Although this is not an exhaustive review of previous

classification studies in tropical forests, these results

illustrate the point that classification accuracy in the present

study can be considered satisfactory, given that two of the

classified forest types were non-inundated primary forests

that lacked any apparent structural dissimilarities.

6.1. Applications

The methods used in the present study allowed the

separation of floristically defined tierra firme forest classes

from Landsat ETM+ images with a reasonable accuracy.

This type of habitat data can offer valuable information for

sustainable resource use and biodiversity conservation,

where vegetation types can be used as surrogates for

modeling the distributions of species and communities

(Ferrier, 2002; Foody, 2003; Kerr & Ostrovsky, 2003). It

is especially useful in complex tropical rain forests, where

the distribution patterns of individual species are poorly

known and other vegetation mapping methods are rarely

applicable.

The tierra firme classes in the present study differ in soil

fertility (see Salovaara et al., 2004), and soils can also

influence herbivore abundances by a number of mecha-

nisms. For example, plants may invest more in defense

against herbivores when growing on poor soils (Coley et al.,

1985; Fine et al., 2004; Janzen, 1974), and vegetation

productivity may also be lower on poorer soils (Peres,

2000). The results of the present study together with the

mammal census data from the same area will make it

possible to test this hypothesis in the future by comparing

population densities of large-bodied herbivorous mammals

between forest types.

For the purposes of such wildlife habitat studies the

classification accuracy (85%) and spatial resolution (500 m)

of the present study can be considered sufficient. Large-

bodied mammals generally have large home ranges and

consequently small-scale habitat patterns are less relevant

for them than for species that move in less extensive areas.

Furthermore, the boundaries between western Amazonian
biotopes are generally gradual rather than abrupt (Tuomisto

et al., 1995). Thus, defining exact locations for the

boundaries is inevitably somewhat arbitrary.

The classification presented here is rudimentary in the

sense that only two tierra firme types were separated, even

though both are internally heterogeneous (Salovaara et al.,

2004). However, the two recognized tierra firme types are

floristically clearly distinct, and apparently represent the two

extremes of the soil fertility gradient in the study area

(Salovaara et al., 2004). The intermediate tierra firme forest,

which was lumped with Pebas formation forest here, was

found in relatively small patches in the study area. Its

recognition would probably be of only minor relevance for

the habitat use of wide-ranging mammals. In any case, the

classification presented here is more advanced than the

generalized inundated forest vs. tierra firme dichotomy that

has been frequently applied in ecological studies in

Amazonia.

Studies using comparable methods to ours in the Yasunı́

area in Ecuador (Tuomisto et al., 2003a) and in the Sucusari

area in NE Peru (Tuomisto et al., 2003b) yielded even

higher Mantel correlations between the spectral and floristic

distance matrices than the present study did. This suggests

that a shorter ecological gradient was covered in the present

study than in the two earlier studies. When the difference

between the poorest and the richest soils included in a study

is smaller, the floristic differences are also smaller, which

can be expected to lead to smaller differences in canopy

reflectance. Nevertheless, positive and significant Mantel

correlations in all three areas indicate that the congruence

between the spectral and floristic patterns is a recurrent

phenomenon in different parts of Western Amazonia.
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