EL VOLCANISMO DE LA REGION DE LA RAMADA

DANIEL J. PÉREZ Y VICTOR A. RAMOS

Laboratorio de Tectónica Andina, Universidad de Buenos Aires

INTRODUCCION

La presencia de rocas volcánicas en el cordón de la Ramada se remonta a los estudios de Güssfeldt, quien en 1883 realizó el primer reconocimiento de esta región y denominó como tal, a un conjunto de cerros que superaban los 6,000 m de altura (en Tornquist, 1898). Ese explorador reconoció el origen volcánico de estos cerros y propuso la existencia de un extenso cráter. Algunas observaciones de índole general habían sido realizadas por Bodenbender (en Tornquist, 1898), quien se concentró en la descripción de la secuencia sedimentaria (véase figura 3, capítulo 2).

Con posterioridad a estos reconocimientos iniciales, la expedición científica polaca a la Alta Cordillera de San Juan y Mendoza, a la vez que escaló los cerros Mercedario, Aconcagua y varios picos del cordón de la Ramada en 1934, hizo observaciones geológicas, colectó fósiles en los cordones de la Ramada y el Espíncito, pero a excepción de una breve información (Anónimo, 1934), no se han dado a conocer los resultados científicos de la misma. Suerte parecida tuvieron los reconocimientos de Heim (1945), que con excepción de unas sucintas descripciones de la región de la Ramada, nunca realizó una monografía científica de las numerosas muestras, levantamientos y abundantes fósiles obtenidos de la región.

Se puede afirmar que el cordón de la Ramada había permanecido prácticamente desconocido hasta el presente estudio. Algunos resultados preliminares han sido dados a conocer por Álvarez y Pérez (1993) y Pérez (1994, 1995), aunque gran parte de las observaciones permanecían inéditas.

En la región de la Ramada se han distinguido en territorio argentino las siguientes unidades volcánicas: Formación Farellones, Brecha Andesítica Hornillas, Andesita La Laguna, Complejo Volcánico La Ramada, Andesita Cerro Pirámide y Dacitas Cerro Bayo del Cobre.

FORMACION FARELLONES
(Klohns, 1960)

El nombre de Farellones fue propuesto informalmente por Muñoz Cristi (in Hoffstetter et al. 1957), pero la primera descripción formal de esta unidad pertenece a Klohn (1956, 1960). Este autor describió bajo esta denominación a una potente secuencia de estratos volcánicos continentales, de edad terciaria, que en la localidad de Farellones en las proximidades de Santiago de Chile, se apoyarían en forma discordante sobre la Formación Abanico, de supuesta edad cretácea.

A la latitud del presente estudio, esta unidad alcanza gran desarrollo en territorio chileno donde ha sido descripta por Rivano et al. (1993), tanto en las proximidades de
la laguna del Pelado, como en las nascentes del río Rocín. En territorio argentino sus afloramientos son más limitados. Se los ha reconocido entre el arroyo de la Honda y el arroyo Longómiche, en el sector occidental del cordón Valle Hermoso, donde se ha podido diferenciar de las volcanitas de la Formación Juncal, por la marcada discordancia angular que separa a ambas unidades (Cristallini et al., 1994).

Afloramientos menores de esta unidad se han identificado al sur del paso de La Honda y en el cordón de Longómiche, ya que la actividad principal del arco se ubicaba en el territorio chileno adyacente.

La Formación Farellones está compuesta por una alternancia de flujos pirotectánicos y coladas lávicas, de composición dominante andesítica a dacítica, donde se destacan algunos niveles de tobas de caída pliniana de composición ácida.

Una muestra representativa de composición andesítica, estudiada al microscopio, presenta textura porfirítica compuesta por un 65% de fenocristales y un 35% de pasta. Los fenocristales corresponden a grandes cristales de oligoclasa a andesina subhedral, a hornblenda cuhedral muy alterada y esca- sos piroxenos. La pasta es vitrea y se halla alterada a arcillas y carbonatos.

Se observan también brechas volcánicas dacíticas, con matriz volcánica de textura porfirica. Esta está compuesta por fenocristales y pasta en partes iguales. Los fenocristales son de oligoclasa subhedral (80%), hornblenda (15%) y cuarzo anhidral (5%). La pasta está constituida principalmente por plagioclasa (80%) y cuarzo microcristalino (20%).

Edad y correlación

En el sector chileno, Munizaga y Vicente (1982) obtuvieron diversas edades con valores que oscilan entre 10,9 ± 0,4 Ma y 20,4 ± 0,5 Ma. Una dacita en el paso de Las Ojotas arrojó 17 ± 2 Ma; una andesita porfirica en la Laguna del Pelado 18,7 ± 1,4 Ma; un pórfido dacítico en el río Yunque 15,4 ± 0,4 Ma. Todos estos valores corresponden a la base de la Formación Farellones. Para la parte media de la unidad se dispone de un valor de 13,5 ± 0,4 Ma, en el cerro Volcán (Munizaga y Vicente, 1982).

Rivano et al. (1990) coinciden en que el lapso representado por la Formación Farellones corresponde a un periodo de actividad volcánica, iniciado hace 20 Ma y concluido hace unos 10 Ma. Según Rivano y Sepúlveda (1991) estas edades permiten asignar a la Formación Farellones una edad esencialmente miocena, siendo equivalente con la Formación Cerro de Las Tórtolas, expuesta en la Cordillera de Elqui (Chile) y en el valle del Cura (Argentina) (Poodoz y Cornejo, 1988; Nasi et al., 1990).

Los afloramientos bajo estudio se pueden correlacionar a lo largo del rumbo con los descriptos por Rivano et al. (1993) al sur de la laguna del Pelado. Estos afloramientos, correspondientes a los sectores más orientales de la Formación Farellones han sido datados en 18,7 ± 1,4 Ma, dentro del rango que caracteriza la Formación Farellones. Es sobre esta base que se adjudica a esta unidad una edad miocena inferior a media y se la homologa con las rocas volcánicas aflorantes en el sector occidental de la región de la Ramada.

BRECHA ANDESITICA HORNILLAS

Esta unidad, cuya sección tipo se halla en las proximidades de la localidad de Las Hornilllas sobre el río de los Patos, ha sido descripta como uno de los miembros inferiores de la Formación Chinchas por Pérez (1995). Si bien su posición estratigráfica y desarrollo se los analizará en el capítulo correspondiente a los depósitos sinorgénicos, se hará aquí una breve mención a fin de completar el cuadro volcánico de la región de la Ramada.

Estos depósitos corresponden a una brecha andesítica que se desarrolló desde la localidad de Las Hornilllas en el río de los Patos, hasta la región del Mercedario (Pérez, 1994). Este miembro volcánico se correlaciona con la brecha andesítica observada al norte del río de las Pichireguas y que continuaria aún más al norte, al oeste de la cordillera de Ansilta.

En la localidad de Las Hornilllas y las Pichireguas se observan que estos depósitos volcánicos se han desarrollado en forma sincrónica a la Formación Farellones, pero en la región del retroarco. Estas brechas volcánicas están asociadas con las sedimentitas de edad terciaria de la cuenca de Manantiales, donde se depositó la Formación Chinchas.

Los principales y más extensos depósitos de estas volcanitas, son los desarrollados en el valle principal del río de los Patos, ubicados casi en la base de la cuenca terciaria. Estos depósitos se extienden desde
la desembocadura del río Blanco, y con rumbo norte-sur, alcanzan la localidad de Las Hornillas, continúan por la margen oeste del río de los Patos hasta la desembocadura del río de las Leñas, donde cruzan el río hacia la margen este y llegan hasta el arroyo de Las Casitas en el faldeo oeste de la cordillera del Tigre (véase figura 1).

Los otros depósitos de brecha andesítica, se encuentran al norte y sur del río Bra- madero y oeste del río Blanco, en el paraje denominado Las Pichireugas de la región del Mercedario, ya fuera del área mapeada (Pérez, 1994). En estos depósitos volcánicos no se pudo observar la base, pero se encuentran inmediatamente por encima de las volcanitas del Grupo Choiyoi, por lo cual se estima que también se desarrollaron en la sección basal de la secuencia terciaria, lo que permitiría correlacionarlos con aquellos de Las Hornillas. Estas brechas andesíticas presentan menor desarrollo que los del valle del río de los Patos, pero las relaciones de campo indican su continuidad hacia el norte del río Blanco, ya fuera del área de estudio (Lenci- nas, 1982; Pérez, 1994).

La descripción macroscópica de estas rocas, muestra una brecha de flujo andesítica a traquitandesítica, de color pardo verdusco. La textura de roca es brechosa con clastos angulosos de la misma composición que la pasta. El espesor de estas volcanitas varía de 50 m en Las Hornillas a 150 m un poco más al sur en la desembocadura del río de las Leñas; el espesor de las brechas andesíticas de Las Pichireugas se estimó en 120 a 150 metros.

Una muestra representativa de las brechas andesíticas presenta al microscopio textura porfirica, con fenocristales de plagiolasa, feldespato alcalino, clinopiroxenos y anfiboles. Los fenocristales de plagioclasa están parcialmente albítizados y argilitados. La plagioclasa presenta maclas según ley de albita y están levemente zonadas en los bordes. Los feldespatos alcalinos se encuentran argilitizados, fracturados y reemplazados por material albítico. El clinopiroxeno es augítico y en algún caso se observa coloreado debido probablemente al titanio. El anfibol es muy pleocroico y posee bajo ángulo de extinción y colores diferentes, entre el pardo rojizo y verde, presentándose de forma irregular sin seguir ningún patrón. La textura de la roca es brechosa con clastos angulosos de la misma composición que la pasta y con la misma mineralogía. Se observan sólo algunas diferencias, por ejemplo en los clastos de andesitas que conforman la brecha. En ésta se ven fenocristales de an-
fiboles con efectos de resorción con la pasta, donde se pueden ver coronas de opacos y opacos más proxeños. La roca es inhomogénea presentando drusas o miarolas donde el tamaño de grano es mucho mayor que en la propia brecha, lo que indicaría que al menos en parte la roca fue intrusiva. La pasta si bien es variable de un sector a otro, está formada por microlitos de plagioclase y feldespato alcalino con predominio de hábito fluidal, encontrándose también del tipo microgranosa. Interstitialmente se observan ceolítas y cavidades rellenadas con ceolítas, carbonatos y silice.

Las características petrográficas y su geometría de depositación permitirían interpretar a estas rocas como pertenecientes a un flujo piroclástico proximal de amplia extensión areal desarrollado en la región de retroarco.

Edad y correlación

La edad de la Brecha Andesítica Hornillas depende de la edad asignada a la base de la Formación Chimches en la cuenca de Manantiales. Si se acepta una edad de 19 Ma como la propuesta por Jordan et al. (1996) para la secuencia sedimentaria inmediatamente posterior a la brecha, se podría inferir una edad miocena inferior, aproximadamente de 20 Ma para esta unidad. Este rango de edades es coherente con el tiempo de efusión de la Formación Farellones en el arco principal en territorio chileno.

Por su edad y posición de retroarco, estas andesitas serían sincrónicas con otras volcanitas conocidas más al norte, como el Basalto Máquinas de 22 Ma, en la región del valle del Cura (Ramos et al., 1987, 1990c) y más al sur en la región del cerro Colorado en los Paramillos de Mendoza (Ramos et al., 1991b). Esta faja de volcanitas de retroarco ha sido descripta en las proximidades de Barreal por Leveratto (1976) y Kay et al. (1987 a y b).

ANDESITA LA LAGUNA

En el extremo sudeste del cordón del Espinacito, Pérez (1995) localizó un cuerpo subvolcánico de características intrusivas y de composición andesítica. Estas rocas por sus relaciones de campo, modo de afloramiento y características texturales, se las identificó como un cuerpo intrusivo subvolcánico aflorante a ambos lados del arroyo de la Laguna. Se observan dos sectores de diferente exposición. El sector al norte del arroyo mencionado está formado por un
cuerpo de 1 a 2 km de ancho por unos 4 km de longitud, de orientación norte-sur. El sector al sur del arroyo de la Laguna, tiene mayores dimensiones, unos 4,5 km de ancho por unos 7 km de longitud. El límite entre ambos podría ser tectónico y controlado por una falla que corriera por el arroyo. Ambos cuerpos presentan formas redondeadas y se encuentran intruyendo a rocas riolíticas del Grupo Choyoi (véase figura 2).

La descripción macroscópica de estas rocas, indica que son de color blanquecino, compactas, de textura porfirítica, observándose fenocristales subhedralas de plagioclasa, de color blanco y hábito tabular, además de cuarzo y feldespato. Se observaron máficos subhedral de color negro verdoso, que corresponden a hornblenda, piroxenos y biotita. La pasta es afanítica de color blanco.

Una muestra representativa observada al microscopio mostró una textura granosa fina, con pasta compuesta por cristales de plagioclasa dispuestos en tabillas en textura pilotáctica. Los fenocristales principales son plagioclasa y biotita, siendo estos últimos los más grandes alcanzando un tamaño de 2 a 3 milímetros. En menor proporción hay anfíboles, biotita, cuarzo, epidoto y opacos. El anfibol es hornblenda y de menor tamaño que la biotita. Hay tres tipos de máficos: piroxenos, anfibol y biotita. Hay cuarzo y feldespato juntos, lo que indica actividad magnética tardía. La roca original estaba compuesta por plagioclasa, anfibol y piroxeno y con una fase de cristalización final de cuarzo, feldespato y biotita. El feldespato y el cuarzo son intersticiales y se encuentran en igual proporción. Como minerales accesorios hay apatita y cristales de opacos.

Edad

Las relaciones estratigráficas indican que este cuerpo es posterior al Grupo Choyoi, no estando en contacto con la Formación Chinchex.

Se ha datado por el método Ar/Ar en el laboratorio de geocronología de la Queens University de Canadá una muestra obtenida de esta andesita al norte del arroyo homólogo (véase cuadro 1 y figura 3).

Esta muestra arrojó una edad de 15,45 ± 0,30 Ma lo que daria para la Andesita La Laguna una edad miocena media. Se ha interpretado esta edad como una edad cercana a la cristalización de la andesita, y no una edad de levantamiento, dado que éste se produjo mucho tiempo después del emplazamiento de este cuerpo.

COMPLEJO VOLCANICO LA RAMADA

Con este nombre se han agrupado las volcanitas miocenas que integran este centro efusivo. El complejo volcánico de la Ramada se extiende entre las cabeceras del arroyo de los Patillos y las nacientes de los arroyos Ramada y Ramada Norte (figura 4), en el sector sudoccidental de la provincia de San Juan. Gran parte de sus rocas volcánicas se encuentran cubiertas por hielo y depósitos morrénicos.

En este centro volcánico se han podido reconstruir una serie de unidades, las que
<table>
<thead>
<tr>
<th>Muestra</th>
<th>Laboratorio N°</th>
<th>Material</th>
<th>% K</th>
<th>$^{40}\text{Ar}\ rad$ (ml/g)</th>
<th>$^{40}\text{Ar}\ Atm}$</th>
<th>Edad (Ma)</th>
<th>Error (2σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34/92 Co. Pirámide</td>
<td>AK-3487</td>
<td>Roca Total</td>
<td>1.60</td>
<td>0.257</td>
<td>88.16</td>
<td>9.2</td>
<td>± 0.3</td>
</tr>
<tr>
<td>RST-2 (M29) Cerro Stelzner</td>
<td>P1064. RST</td>
<td>Roca Total</td>
<td>1.136</td>
<td>0.472</td>
<td>68</td>
<td>10.7</td>
<td>± 0.7</td>
</tr>
<tr>
<td>RCH-1 (M28) Cerro Schiller</td>
<td>P1060.RCH</td>
<td>Roca Total</td>
<td>1.163</td>
<td>0.577</td>
<td>51</td>
<td>12.7</td>
<td>± 0.6</td>
</tr>
<tr>
<td>(M30) Arroyo La Laguna</td>
<td></td>
<td>Biotita</td>
<td>6.9</td>
<td>1.15</td>
<td>15.45</td>
<td></td>
<td>± 0.30</td>
</tr>
</tbody>
</table>

* Dataciones obtenidas por K/Ar en roca total en el Laboratorio de Geocronología del SERNA-GEOMIN, Santiago de Chile.
** Datación realizada por K/Ar en roca total en el INGEIS, Universidad de Buenos Aires.
*** Datación por el método Ar39/Ar40 realizada en el laboratorio de geocronología de la Queens University, Canadá.

se hallan parcialmente desmanteladas por una intensa erosión glaciar y fluvioboreal impuesta. Estas son descriptas de mayor a menor edad relativa.

Estratovolcán La Ramada

Este constituye el centro efusivo principal que ha podido ser reconstruido a través de los remanentes volcánicos de los sectores occidental y oriental del primitivo volcán.

El sector oriental está constituido por varios centenares de metros de aglomerados volcánicos y brechas andesíticas, interpuestos con coladas andesíticas, que desde las nacientes del río Frío se extienden hasta el río de la montaña occidental de 4.600 m. Infelizmente las muestras obtenidas del sector de cumbre de este cerro, han sido extraídas durante el envío al laboratorio para su datación. Se las ha podido examinar a los largos del filo occidental del glaciar de la Ramada, así como en las nacientes norte de este ventisquero. La roca dominante es una andesita maciza, de naturaleza lávica, con hornblenda como principal mafítico. Se han reconocido también facies más dacíticas, con feldespato, cuarzo y biotita, como principales fenocrísticos. La sección se halla en parte intruida por filones de composición andésítica, como se observa al este del cerro Montenegro. Tanto las coladas, como los depósitos piroclásticos, inclinan unos pocos grados hacia el este-noreste, apoyándose en discordancia angular sobre los depósitos jurásicos.

El sector occidental se halla más cubierto por hielos y glaciares. Se lo puede observar en el cerro Alma Negra y al norte del cerro Stelzner y en forma esporádica dentro del campo de hielo del cerro Mesa. SUS depósitos volcánicos cubren en discordancia angular a las distintas unidades mesozóicas y se extienden hacia el norte por el campo de hielo del cordón de la Ramada (figura 4). En las nacientes del río Colorado, así como en las cabeceras del arroyo Ramada Norte, han sido descriptas por Álvarez y Pérez (1993). Están constituidos por más de 150 m de espe- sor de andesitas porfíricas compuestas por cristales subhídridos de plagioclasa y hornblenda en forma acicular, en una pasta afínica de color verde. Sus mayores espesores se observan en el cerro Alma Negra, donde los depósitos volcánicos inclinan hacia el oeste y el sur.

Ambos conjuntos de afloramientos permiten reconstruir un centro efusivo desmantelado por la erosión de unos 80 km2 cuyo foco de emisión se ubicaría en el circo glaciar de las nacientes del arroyo de los Patillos. En forma similar a lo interpretado por Güßfeldt (en Tornquist, 1998), se ha inferido la existencia de una antigua caldera, cuyas paredes constituyen la divisoria de agua entre las cuencas de los arroyos Ramada Norte y
Figura 4: Esquema geológico de la distribución del volcanismo mioceno en el Complejo Volcánico La Ramada.
los Patillos. Esta caldera tendría un diámetro aproximado de unos 5 km y su pared oriental ha sido erosionada retrocedentemente por el glaciar del cerro Alma Negra.

Diques y filones andesíticos

La presencia de filones capa de una andesita anfibólica emplazados en las areniscas rócticas de las nacientes del río de las Leñas fue descrita por primera vez por Stelzner (1873b). Este autor observó numerosos filones transversales e interstratificados de andesitas anfibólicas y basaltos en estas capas.

A ambos lados del paso del Espinacito, se observan importantes filones capa de andesita hornblendífera, que intruyen a rocas de edades triáscar superior y jurásica media de las Formaciones Rancho de Lata, Los Patillos y La Manga. Estas rocas han sido interpretadas como filones capa y diques satélites asociados al primitivo estratovolcán de La Ramada (figura 5).

Uno de estos filones capa, que ya había sido descrito por Stelzner (1873b) y Schiller (1912), se encuentra inmediatamente al descender del paso del Espinacito hacia el este, en las nacientes del río de las Leñas. Stipanicic (1966) describió este filón al analizar la secuencia jurásica. En este sector el filón forma una cascada e intruye a la Formación Rancho de Lata de edad triáscar superior - jurásica inferior. Otro filón capa fue localizado en el filo mismo del paso del Espinacito al noroeste del paso. En este sitio el filón intruye a las areniscas calcareas de la Formación Los Patillos de edad jurásica. Un tercer filón, quizás el más importante por sus dimensiones, se localiza al oeste del paso del Espinacito. Este filón nace casi en el filo del paso y llega hasta el refugio Manrique o Bodenbender.

La descripción macroscópica de estos filones capa los muestra como rocas compactas de color gris verdoso, textura porfírica, con fenocristales subhedrales de plagioclasa blancos y hábito tabular. Se observan máficos aciculares negros de hornblenda. La pasta es afanítica y verde oscura. El espesor de los diques es variable, alcanzando en la comarca aproximadamente entre 10 y 40 metros.

Una muestra representativa de los filones capa observada al microscopio mostró una textura porfírica, con pasta de textura plisada a intercristal. La roca está constituida por un 50 % de pasta y 50 % de fenocristales, dentro de los cuales los principales corresponden a plagioclase y en menor proporción anfibol y minerales opacos. Los fenocristales de plagioclase se presentan en
los Patillos. Esta caldera tendría un diámetro aproximado de unos 5 km y su pared oriental ha sido erosionada retrocedentemente por el glaciar del cerro Alma Negra.

Diques y filones andesíticos

La presencia de filones capa de una andesita anfibólica emplazados en las areniscas rítmicas de las nacientes del río de las Leñas fue descripta por primera vez por Stelzner (1873b). Este autor observó numerosos filones transversales e interesratificados de andesitas anfibólicas y basaltos en estas capas.

A ambos lados del paso del Espinacito, se observan importantes filones capa de andesita hornblendífera, que intruyen a rocas de edades triásica superior a jurásica media de las Formaciones Rancho de Lata, Los Patillos y La Manga. Estas rocas han sido interpretadas como filones capa y diques satélites asociados al primitivo estratovolcán de La Ramada (figura 5).

Uno de estos filones capa, que ya había sido descripto por Stelzner (1873b) y Schiller (1912), se encuentra inmediatamente al descender del paso del Espinacito hacia el este, en las nacientes del río de las Leñas. Stipanicic (1966) describió este filón al analizar la secuencia jurásica. En este sector el filón forma una cascada e intruye a la Formación Rancho de Lata de edad triásica superior - jurásica inferior. Otro filón capa fue localizado en el filo mismo del paso del Espinacito al noroeste del paso. En este sitio el filón intruye a las areniscas calcáreas de la Formación Los Patillos de edad jurásica. Un tercer filón, quizás el más importante por sus dimensiones, se localiza al oeste del paso del Espinacito. Este filón nace casi en el filo del paso y llega hasta el refugio Manrique o Bodenbender.

La descripción macroscópica de estos filones capa los muestra como rocas compactas de color gris verdoso, textura porfirica, con fenocrístales subhedrales de plagioclasa blancos y hábito tabular. Se observan máxicos aciculares negros de hornblenda. La pasta es afánítica y verde oscura. El espesor de los diques es variable, alcanzando en la comarca aproximadamente entre 10 y 40 metros.

Una muestra representativa de los filones capa observada al microscopio mostró una textura porfirica, con pasta de textura pilotáxica a intersertal. La roca está constituida por un 50 % de pasta y 50 % de fenocrístales, dentro de los cuales los principales corresponden a plagioclasa y en menor proporción anfibol y minerales opacos. Los fenocrístales de plagioclasa se presentan en
El volcanismo de la región de la Ramada

283

cristales subhiedrales a anhedrales con zona-
nación marcada de andesina. Algunos cris-
tales de plagioclasa se hallan cribados y
reemplazados ya sea por material de la pas-
ta, por material secundario que puede ser
carbonato y albita o material arcilloso. La
pasta se halla compuesta por feldespato al-
calino intersticial.

Los anfiboles corresponden a hornblen-
da zonal y pálida. Estos cristales se presentan
con rebordes de opacos y otros cribados
en las partes centrales. Hay anfibol secun-
dario en asociación con clorita y carbonato,
así como cloritas. También hay reemplazo
de los anfiboles secundarios por material al-
bíctico. Se observaron minerales alterados
de carbonatos diseminados hasta argilitizados;
venillas cuarzo-feldespáticas de albita y fel-
despato. Como minerales accesorios hay
apatita, opacos de magnetita en cantidad
aproximada al 3 % y carbonatos en grumos
o parches.

La orientación de estos diques es anular
a radial con respecto a la caldera volcánica.

Centros volcánicos póstumos

En la periferia de la caldera se han ubi-
cado dos centros efusivos secundarios co-
respondientes a los cerros Schiller y Stelz-
ner (figura 4). El cerro Schiller corresponde
a un domo andésitico fuertemente erosiona-
dose, que se emplaza en las andesitas y depó-
sitos piroclásticos más antiguos.

El centro efusivo del cerro Stelzner se
hallaba más preservado que el anterior. En el
mismo se pueden observar coladas lávicas y
brechas andésiticas, derramadas hacia el
este por más de un kilómetro. Estas también
se apoyan en discordancia sobre las rocas
jurásicas.

Una muestra representativa del cerro
Stelzner indica que son rocas de color gris
verdoso, compactas, de textura porfirítica en
donde se reconocen fenocristales subhiedra-
les de plagioclasa, de color blanco y hábito
tabular. Se observan máficos aciculares, de
color negro verde, que corresponden a
hornblenda, algunos con hábito tabular. La
pasta es afanítica de color verde claro. Al
microscopio la roca tiene textura porfirica,
con pasta de textura andesítica o seriada.
La roca está constituida por un 55 % de pas-
ta y 45 % de fenocristales, dentro de los cuas-
elos los principales corresponden a plagioclasa,
hornblenda y en menor proporción a mi-
nerales opacos, restos de anfibol, biotita y
piroxenos. Los fenocristales de plagioclasa
son subhiedrales a anhedrales, con hábito
tablular y corresponden a andesina-labrado-
rita o más sólida, presentándose fracturada
y corroída por la pasta. Algunas plagioclasas
muestran zonación y una alteración selecti-
va según zonas, encontrándose con núcleos
oscilatorios sódico-cálcicos, típicos de cáma-
ras magmáticas abiertas o con aportes al
magma. Los anfiboles son zonales, están to-
talmente corroídos por la temperatura y co-
responden a hornblenda. Dichos cristales
están reemplazados por augita granular y
corroidos por opacos relacionados a la des-
hidratación. Hay biotita pero es muy escasa
y está preservada como inclusiones en los
minerales de anfiboles. La presencia de an-ibol y piroxenos implica que hay aporte de
diferentes composiciones a la cámara mag-
mática. Esto pudo haber provocado la sin-
crónica alteración de la hornblenda y las pla-
gioclasas. Como minerales accesorios hay
circón y opacos de magnetita.

Depósitos de colapso de pared

A lo largo de nueve kilómetros sobre el
valle del arroyo de los Patillos se observan
depósitos de rocas volcánicas constituidos
por aglomerados volcánicos y conglomerados
volcaniíclásticos que se derramaron a lo largo
del actual valle del arroyo. Sus derrames
más distales llegan al tramo inferior del arro-
yo Rancho de Lata donde han sido descritos
por Álvarez (1991). El espesor de estos de-
pósitos alcanza hasta 30 m de potencia y
deben haberse depositado por un flujo de
alta velocidad, como se infiere por su ascen-
so contra la pendiente, tal como se observa
en el tramo final entre el arroyo de los Pati-
illos y el arroyo Rancho de Lata. La roca do-
mínante es un aglomerado andésitico con
matriz volcánica, que en sectores se halla
desagregado en bloques aglutinados por ma-
terial sedimentario. Se ha interpretado a estos
depósitos como el resultado de un colapso
de la pared sur del estratovolcán, formada
por aglomerados volcánicos gruesos y depó-
sitos piroclásticos, redepositados mediante
un flujo de escombros de alta densidad. Por
sus características fluidales el colapso de es-
ta pared volcánica podría haber ocurrido
cuando parte del material volcánico no es-
taba aún completamente consolidado.

Edad del complejo volcánico

Las rocas volcánicas y piroclásticas del
Complejo Volcánico La Ramada son poste-
CUADRO II: ANÁLISIS QUÍMICOS REPRESENTATIVOS DE ANDESITAS DEL COMPLEJO VOLCANICO DE LA RAMADA

<table>
<thead>
<tr>
<th>Muestra</th>
<th>M27</th>
<th>M28</th>
<th>M29</th>
<th>M30</th>
<th>RD1</th>
<th>M12</th>
<th>B83</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>59.74</td>
<td>60.25</td>
<td>60.79</td>
<td>57.63</td>
<td>61.44</td>
<td>60.83</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.73</td>
<td>0.79</td>
<td>0.73</td>
<td>0.76</td>
<td>0.80</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>17.82</td>
<td>17.51</td>
<td>17.83</td>
<td>18.40</td>
<td>16.85</td>
<td>17.30</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>5.31</td>
<td>5.32</td>
<td>5.32</td>
<td>6.79</td>
<td>5.39</td>
<td>6.12</td>
<td>6.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td>0.17</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3.96</td>
<td>3.61</td>
<td>2.36</td>
<td>2.62</td>
<td>3.10</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>6.58</td>
<td>6.44</td>
<td>6.84</td>
<td>6.65</td>
<td>6.17</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>4.15</td>
<td>4.11</td>
<td>4.19</td>
<td>3.94</td>
<td>3.94</td>
<td>3.67</td>
<td>3.95</td>
</tr>
<tr>
<td>K2O</td>
<td>1.47</td>
<td>1.68</td>
<td>1.59</td>
<td>2.64</td>
<td>1.42</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.13</td>
<td>0.23</td>
<td>0.29</td>
<td>0.38</td>
<td>0.30</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20.99</td>
<td>23.71</td>
<td>23.29</td>
<td>25.42</td>
<td>21.4</td>
<td>25.60</td>
<td>25.7</td>
</tr>
<tr>
<td>La</td>
<td>44.08</td>
<td>50.18</td>
<td>48.60</td>
<td>53.26</td>
<td>44.1</td>
<td>51.86</td>
<td>52.9</td>
</tr>
<tr>
<td>Ce</td>
<td>19.38</td>
<td>22.17</td>
<td>22.18</td>
<td>24.12</td>
<td>21.2</td>
<td>25.93</td>
<td>25.0</td>
</tr>
<tr>
<td>Nd</td>
<td>3.92</td>
<td>4.20</td>
<td>4.54</td>
<td>4.42</td>
<td>4.04</td>
<td>4.90</td>
<td>5.22</td>
</tr>
<tr>
<td>Sm</td>
<td>1.03</td>
<td>1.16</td>
<td>1.17</td>
<td>1.41</td>
<td>1.10</td>
<td>1.52</td>
<td>1.76</td>
</tr>
<tr>
<td>Eu</td>
<td>0.45</td>
<td>0.46</td>
<td>0.56</td>
<td>0.70</td>
<td>0.473</td>
<td>0.65</td>
<td>0.658</td>
</tr>
<tr>
<td>Tb</td>
<td>1.30</td>
<td>1.41</td>
<td>1.54</td>
<td>2.15</td>
<td>1.34</td>
<td>1.78</td>
<td>2.13</td>
</tr>
<tr>
<td>Yb</td>
<td>0.17</td>
<td>0.18</td>
<td>0.22</td>
<td>0.32</td>
<td>0.186</td>
<td>0.28</td>
<td>0.326</td>
</tr>
<tr>
<td>Lu</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>54</td>
<td>38</td>
<td>1349</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>589</td>
<td>714</td>
<td>597</td>
<td>580</td>
<td>590</td>
<td>1349</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>586</td>
<td>746</td>
<td>576</td>
<td>659</td>
<td>574</td>
<td>607</td>
<td>1134</td>
</tr>
<tr>
<td>Ba</td>
<td>0.47</td>
<td>0.60</td>
<td>1.72</td>
<td>3.22</td>
<td>0.5</td>
<td>2.27</td>
<td>0.7</td>
</tr>
<tr>
<td>Cs</td>
<td>0.98</td>
<td>0.92</td>
<td>0.79</td>
<td>2.31</td>
<td>0.9</td>
<td>1.51</td>
<td>1.6</td>
</tr>
<tr>
<td>U</td>
<td>3.62</td>
<td>3.62</td>
<td>3.50</td>
<td>8.34</td>
<td>3.3</td>
<td>4.43</td>
<td>4.2</td>
</tr>
<tr>
<td>Th</td>
<td>0.52</td>
<td>0.49</td>
<td>0.53</td>
<td>0.90</td>
<td>0.46</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>15.8</td>
<td>13</td>
<td>8.8</td>
</tr>
<tr>
<td>Nb</td>
<td>68</td>
<td>37</td>
<td>31</td>
<td>4</td>
<td>62</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>19</td>
<td>14</td>
<td>9</td>
<td>2</td>
<td>17</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>33</td>
<td>17</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>RAZONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO/MgO</td>
<td>1.34</td>
<td>1.47</td>
<td>2.26</td>
<td>2.59</td>
<td>5.39</td>
<td>1.97</td>
<td>3.80</td>
</tr>
<tr>
<td>K2O/Na2O</td>
<td>0.35</td>
<td>0.41</td>
<td>0.38</td>
<td>0.67</td>
<td>0.38</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Rb/Sr</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.094</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba/La</td>
<td>27.9</td>
<td>31.4</td>
<td>24.7</td>
<td>25.9</td>
<td>26.8</td>
<td>23.7</td>
<td>44.1</td>
</tr>
<tr>
<td>La/Sm</td>
<td>5.3</td>
<td>5.6</td>
<td>5.1</td>
<td>5.7</td>
<td>5.3</td>
<td>5.2</td>
<td>4.9</td>
</tr>
<tr>
<td>La/Yb</td>
<td>16.2</td>
<td>16.8</td>
<td>15.1</td>
<td>11.8</td>
<td>16.0</td>
<td>14.4</td>
<td>12.1</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.94</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Ba/Ta</td>
<td>1122</td>
<td>1526</td>
<td>1093</td>
<td>728</td>
<td>1240</td>
<td>802</td>
<td></td>
</tr>
<tr>
<td>Ta/La</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>La/Ta</td>
<td>40.2</td>
<td>48.5</td>
<td>44.2</td>
<td>28.1</td>
<td>46</td>
<td>33.8</td>
<td></td>
</tr>
</tbody>
</table>

\[^{143}Nd/^{144}Nd = 0.512612\]

\[\varepsilon\text{Nd} = -0.49\]

\[^{87}\text{Sr}/^{86}\text{Sr} = 0.704609\]
CUADRO III: ANALISIS QUIMICOS REPRESENTATIVOS DE ANDESITAS DEL COMPLEJO VOLCANICO LA RAMADA

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Ra1</th>
<th>Ra2</th>
<th>Ra3</th>
<th>RM2</th>
<th>RCH1</th>
<th>RST1</th>
<th>RST3</th>
<th>RST5</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.06</td>
<td>21.87</td>
<td>22.60</td>
<td>18.75</td>
<td>20.50</td>
<td>19.36</td>
<td>19.79</td>
<td>17.86</td>
</tr>
<tr>
<td>Ce</td>
<td>38.50</td>
<td>47.90</td>
<td>48.70</td>
<td>43.80</td>
<td>58.50</td>
<td>41.50</td>
<td>43.10</td>
<td>38.40</td>
</tr>
<tr>
<td>Nd</td>
<td>18.80</td>
<td>23.90</td>
<td>21.70</td>
<td>22.70</td>
<td>19.00</td>
<td>20.00</td>
<td>19.08</td>
<td>18.10</td>
</tr>
<tr>
<td>Sm</td>
<td>3.51</td>
<td>4.44</td>
<td>4.11</td>
<td>4.11</td>
<td>3.62</td>
<td>3.65</td>
<td>3.69</td>
<td>3.72</td>
</tr>
<tr>
<td>Eu</td>
<td>0.96</td>
<td>1.21</td>
<td>1.14</td>
<td>1.13</td>
<td>1.10</td>
<td>1.01</td>
<td>1.06</td>
<td>1.03</td>
</tr>
<tr>
<td>Tb</td>
<td>0.40</td>
<td>0.51</td>
<td>0.48</td>
<td>0.45</td>
<td>0.39</td>
<td>0.39</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>Yb</td>
<td>0.99</td>
<td>1.25</td>
<td>1.25</td>
<td>1.26</td>
<td>0.93</td>
<td>0.93</td>
<td>1.08</td>
<td>1.07</td>
</tr>
<tr>
<td>Lu</td>
<td>0.13</td>
<td>0.18</td>
<td>0.17</td>
<td>0.18</td>
<td>0.12</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Sr</td>
<td>533</td>
<td>686</td>
<td>638</td>
<td>691</td>
<td>732</td>
<td>696</td>
<td>596</td>
<td>624</td>
</tr>
<tr>
<td>Ba</td>
<td>526</td>
<td>690</td>
<td>679</td>
<td>447</td>
<td>659</td>
<td>570</td>
<td>662</td>
<td>459</td>
</tr>
<tr>
<td>Cs</td>
<td>0.53</td>
<td>0.50</td>
<td>0.65</td>
<td>0.83</td>
<td>1.57</td>
<td>1.13</td>
<td>2.89</td>
<td>0.49</td>
</tr>
<tr>
<td>U</td>
<td>0.70</td>
<td>0.83</td>
<td>1.08</td>
<td>0.67</td>
<td>0.77</td>
<td>0.60</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>Th</td>
<td>2.80</td>
<td>3.38</td>
<td>3.88</td>
<td>3.01</td>
<td>4.76</td>
<td>3.02</td>
<td>2.85</td>
<td>2.86</td>
</tr>
<tr>
<td>Hf</td>
<td>3.05</td>
<td>3.60</td>
<td>3.73</td>
<td>3.60</td>
<td>5.22</td>
<td>3.25</td>
<td>3.38</td>
<td>3.15</td>
</tr>
<tr>
<td>Ta</td>
<td>0.43</td>
<td>0.48</td>
<td>0.53</td>
<td>0.43</td>
<td>0.64</td>
<td>0.35</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>Sc</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Cr</td>
<td>35</td>
<td>46</td>
<td>41</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Ni</td>
<td>15</td>
<td>19</td>
<td>41</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Co</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Razones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba/La</td>
<td>27.6</td>
<td>31.5</td>
<td>30.1</td>
<td>23.8</td>
<td>32.1</td>
<td>29.4</td>
<td>33.4</td>
<td>25.7</td>
</tr>
<tr>
<td>La/Sr</td>
<td>5.4</td>
<td>4.9</td>
<td>5.6</td>
<td>4.6</td>
<td>5.8</td>
<td>5.3</td>
<td>5.4</td>
<td>4.6</td>
</tr>
<tr>
<td>La/Yb</td>
<td>19.2</td>
<td>17.5</td>
<td>18.1</td>
<td>14.8</td>
<td>22.1</td>
<td>17.9</td>
<td>18.3</td>
<td>16.7</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ba/Ta</td>
<td>123.6</td>
<td>1434</td>
<td>1284</td>
<td>1039</td>
<td>1022</td>
<td>1634</td>
<td>1610</td>
<td>1153</td>
</tr>
<tr>
<td>La/Ta</td>
<td>44.8</td>
<td>45.5</td>
<td>42.7</td>
<td>43.6</td>
<td>31.8</td>
<td>55.5</td>
<td>48.1</td>
<td>44.8</td>
</tr>
</tbody>
</table>

| 143Nd/144Nd | 0.512624 |
| 147Sm/144Nd | 0.704753 |

riores a la deformación principal de las secuencias mesozoicas. Las características geoquímicas de las rocas del estratovolcán, de los filones y de los centros volcánicos póstumos son similares, por lo que se las interpreta como pertenecientes a un mismo ciclo eufusivo.

Las únicas dataciones disponibles corresponden a los centros volcánicos póstumos y se ilustran en el cuadro I.

ANDESITA CERRO PIRAMIDE

Estas rocas andesíticas han sido descritas por primera vez por Canzini (1992), quien las reconoció en el cerro Pirámide (4.567 m) aflorante en el sector noroeste de la cordillera de los Penitentes, al sur del Valle Hermoso.

Al noroeste del cerro Pirámide se observan algunas tobas de caida pliniana en la base de la secuencia. El cerro está integrado por coladas lávicas de composición andesítica. Esta roca al microscopio muestra un 30 % de fenocristales y un 30 % de pasta. Los fenocristales son plagioclasa de brillo vitreo y hábito tabular con anfiboles de hábito prismático. El 80 % de los fenocristales son de plagioclasa subhedral a euhedral, con marcada zonalidad y maclas poco desarrolladas. El anfibol, principalmente hornblenda, se halla alterado a tremolita, clorita y óxidos de hierro. La hornblenda se halla parcialmente epidotizada. La pasta tiene textura microgranosa con cristales de plagioclasa, augita y sectores completamente reemplazados que podrían corresponder a pequeños cristales de olivina.

De esta misma localidad se ha estudiado una muestra de la sección lávica con textura porfirica, compuesta por 60 % de fenocristales y 40 % de pasta. Los fenocristales están compuestos mayoritariamente por oligoclase-andesina subhedral a euhedral, anfiboles subhredal alterados y 5 % de minerales opacos. La pasta está muy alterada y es dominantemente vitrea.

Edad y correlación

Una muestra representativa de esta unidad datada por K/Ar en roca total arrojó
CUADRO IV: ANÁLISIS QUÍMICOS REPRESENTATIVOS DE LA FORMACIÓN FARELLONES, DE LA DACITA CERRO BAYO DEL COBRE Y LA ANDESITA CERRO PIRAMIDE

<table>
<thead>
<tr>
<th>UNIDAD</th>
<th>FORMACION FARELLONES</th>
<th>DACITA CERRO BAYO</th>
<th>ANDESITA CERRO PIRAMIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M42 M18 M17</td>
<td>M20 M13</td>
<td>M34</td>
</tr>
<tr>
<td>FeO</td>
<td>1.72 5.27 4.33</td>
<td>2.73 3.41</td>
<td>5.88</td>
</tr>
<tr>
<td>Na2O</td>
<td>5.32 5.39 5.41</td>
<td>5.94 5.92</td>
<td>3.86</td>
</tr>
<tr>
<td>Sr</td>
<td>696 657 719</td>
<td>520 506</td>
<td>511</td>
</tr>
<tr>
<td>Ba</td>
<td>912 317 646</td>
<td>466 815</td>
<td>566</td>
</tr>
<tr>
<td>Cs</td>
<td>1.39 1.06 0.90</td>
<td>3.59 0.60</td>
<td>2.19</td>
</tr>
<tr>
<td>U</td>
<td>1.90 1.27 1.40</td>
<td>1.47 1.65</td>
<td>2.00</td>
</tr>
<tr>
<td>Th</td>
<td>3.87 3.50 3.56</td>
<td>5.61 5.78</td>
<td>6.55</td>
</tr>
<tr>
<td>Hf</td>
<td>3.24 2.80 2.95</td>
<td>3.07 3.38</td>
<td>3.84</td>
</tr>
<tr>
<td>Ta</td>
<td>0.22 0.33 0.34</td>
<td>0.54 0.56</td>
<td>0.55</td>
</tr>
<tr>
<td>Sc</td>
<td>3 11 7</td>
<td>8 8</td>
<td>13</td>
</tr>
<tr>
<td>Cr</td>
<td>7 61 47</td>
<td>27 29</td>
<td>24</td>
</tr>
<tr>
<td>Ni</td>
<td>3 21 16</td>
<td>9 10</td>
<td>12</td>
</tr>
<tr>
<td>Co</td>
<td>4 9 12</td>
<td>6 8</td>
<td>14</td>
</tr>
<tr>
<td>La</td>
<td>15.30 17.75 16.82</td>
<td>22.60 21.90</td>
<td>17.93</td>
</tr>
<tr>
<td>Ce</td>
<td>33.40 38.40 37.40</td>
<td>46.50 43.10</td>
<td>44.90</td>
</tr>
<tr>
<td>Nd</td>
<td>15.90 17.00 19.30</td>
<td>19.86 20.50</td>
<td>21.10</td>
</tr>
<tr>
<td>Sm</td>
<td>2.60 3.22 3.55</td>
<td>3.47 3.48</td>
<td>4.10</td>
</tr>
<tr>
<td>Eu</td>
<td>0.75 0.90 0.98</td>
<td>0.97 0.92</td>
<td>0.83</td>
</tr>
<tr>
<td>Tb</td>
<td>0.22 0.31 0.35</td>
<td>0.41 0.44</td>
<td>0.26</td>
</tr>
<tr>
<td>Yb</td>
<td>0.44 0.56 0.58</td>
<td>1.02 1.05</td>
<td>1.78</td>
</tr>
<tr>
<td>Lu</td>
<td>0.05 0.07 0.07</td>
<td>0.14 0.14</td>
<td>0.26</td>
</tr>
<tr>
<td>BA/LA</td>
<td>59.61 17.86 38.41</td>
<td>20.62 37.21</td>
<td>31.57</td>
</tr>
<tr>
<td>LA/SM</td>
<td>5.9 5.5 4.7</td>
<td>6.5 6.3</td>
<td>4.8</td>
</tr>
<tr>
<td>LA/YB</td>
<td>35.0 31.7 29.0</td>
<td>22.1 20.8</td>
<td>10.1</td>
</tr>
<tr>
<td>EU/EU*</td>
<td>1.11 1.03 1.00</td>
<td>0.96 0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>BA/TA</td>
<td>4106 953 1873</td>
<td>870 1455</td>
<td>1023</td>
</tr>
<tr>
<td>TA/LA</td>
<td>0.01 0.02 0.02</td>
<td>0.02 0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>LA/TA</td>
<td>68.9 53.4 48.7</td>
<td>42.2 39.1</td>
<td>32.4</td>
</tr>
</tbody>
</table>

una edad de 9,2 ± 0,3 Ma (Cristallini y Can- gini, 1993) (véanse valores analíticos en el cuadro I). Dada su proximidad y edades equivalentes con las anesitas de la cordillera de los Penitentes se ha correlacionado esta unidad con el Complejo Volcánico del Aconcagua.

DACITA CERRO BAYO DEL COBRE

En las nacientes del río Mercedario, al norte del portezuelo del Cobre que separa este valle del río de los Teatinos, asoman cuerpos subvolcánicos de composición dacítica, que se han agrupado bajo el nombre de Dacita Cerro Bayo del Cobre. Su máximo desarrollo se observa entre el paso de los Teatinos y el portezuelo del Cobre. Estas dacitas intruyen a la Formación Cristo Redentor y a rocas mesozoicas más antiguas. Las ubica-
ten una intensa alteración hidrotermal, como en el cerro Bayo del Cobre, la que se halla magnificada por su dispersión en los depósitos de remoción en masa. Al oeste del río de los Teatinos, a la latitud del cerro Bayo del Cobre, se encuentra otra zona de alteración hidrotermal de características similares.

Una muestra representativa procedente de su localidad tipo presenta textura porfírica, con un predominio de la pasta (55%) sobre los fenocritales (45%). Estos se componen de plagioclasa reemplaza por carbonatos, anfiboles alterados a epidoto, clorita y carbonatos, cuarzo anhedral redondeado y engolflado (5%) y minerales opacos de hábito cúbico. La pasta está formada por pequeñas tablillas de plagioclasa, anfiboles y vidrio.

Edad y correlación

Rocas dacíticas similares emplazadas en las volcanitas cretácicas de la Formación Juncal en territorio chileno adyacente han sido datadas en 19,3 ± 0,7 y 18,2 ± 0,9 Ma (Rivano et al., 1993). Sin embargo, en ese mismo sector estos autores reconocen la presencia de pórfidos dacíticos intruyendo a la Formación Farellones, cuya edad es posterior a los 12 Ma. Sobre esta base se puede afirmar que existen varios pulsos de emplazamiento de rocas dacíticas a lo largo de la cordillera del Límite. En territorio argentino sólo se puede afirmar que son posteriores a parte de la Formación Farellones, que al sur de la laguna del Pelado, tiene edades de 18,7 ± 1,4 Ma. Dado su emplazamiento posterior a parte de los corrimientos del sector occidental, la edad de estos cuerpos se interpreta como miocena media a superior, alrededor de los 12 a 10 Ma.

CARACTERISTICAS GEOQUIMICAS

Se realizaron análisis geoquímicos de elementos mayoritarios, trazas y tierras raras de muestras representativas de las unidades volcánicas terciarias de la región de la Ramada. Las muestras Ra1, Ra2, Ra3 y RM2, corresponden a lavas andesíticas de la Ramada; RCH1 y M29 a muestras del cerro Schiller; RST1, RST3, RST5 y M29 a muestras del cerro Stelzner; M27 a un filón
capa de las nacientes del río de las Leñas; M30 a una muestra de andesita del cuerpo subvolcánico La Laguna; la B-83 a la Brecha Andesítica Hornillas; M12 a otra muestra de esta unidad procedente de la sección al oeste del río Bramadero; la M20 a la Dacita Cerro Bayo del Cobre, la M13 a una muestra del cuerpo dacítico ubicado sobre el río de los Teatinos al este del anterior; las M42, M17 y M18 a la Formación Farellones en el arroyo de la Honda y a M34 a la andesita del cerro Pirámide.

Los resultados de los análisis se presentan en los cuadros II, III y IV y fueron obtenidos para las muestras M27, M28, M29, M30 y M12 en el laboratorio del ACTLABS, Canadá y para las muestras Ra1, Ra2, Ra3, RM2, RCH1, RST1, RST3, RST5, M13, M17, M18, M20 y M34 en el laboratorio del INSTOC, de la Universidad de Cornell, USA por gentileza de la Dra. Suzanne Kay. Dichos análisis se obtuvieron por los métodos de activación neutrónica (INAA), inductividad de plasma por espectrometría de masa (ICP), fluorescencia de rayos-X (XRF) y microsonda electrónica.

Para las muestras M27, M28, M29, M30 y M12 se realizaron análisis de elementos mayoritarios, trazas y tierras raras y para las muestras Ra1, Ra2, Ra3, RM2, RCH1, RST1, RST3, RST5 se hicieron análisis de elementos traza y tierras raras.

Sobre la base de estos análisis químicos y teniendo en cuenta las relaciones de campo de las volcanitas terciarias, se intentará establecer sus características geoquímicas y evolutivas. También se las correalacionará con las ya conocidas tanto en territorio adyacente chileno (Munizaga y Vicente, 1962; Maksaev et al., 1984; Kay et al., 1987 y b; Kay et al., 1991; Rivano et al., 1990) como argentino (Ramos et al., 1985, 1990c y 1991b). El objetivo consiste en dilucidar la evolución magmática de las volcanitas terciarias y su inserción en un contexto regional que se extiende dentro del segmento 28-33°S correspondiente a la presente zona de subducción subhorizontal.

Análisis de elementos mayoritarios

Las características geoquímicas de los elementos mayoritarios de las muestras analizadas, presentan una variación composicional y restringida en silice: lo que las limita a andesitas y andesitas basálticas (57,63-61,44 % SiO2); ocupando en forma general un campo similar al delimitado por las andesitas de la Formación Farellones en el sector chileno (véanse cuadros II a IV y figura 6).

Así como en las andesitas típicas de muchos arcos volcánicos (Kay et al., 1987a, b y 1991) en las volcanitas de la región de la Ramada, se observan altos contenidos de alúmina (16,85-18,40 %); medios de potasio (1,42-1,68 %); moderados valores de óxidos de hierro (5,31-6,79 %) y un rango en la relación de FeO/MgO de 1,34 a 2,59. La muestra M30 de La Laguna se distingue del resto por su mayor contenido de K2O (2,64 %) (véanse cuadros II y III).
En la figura 6 se presenta el diagrama TAS para rocas volcánicas, el cual grafica el total de álcalis en función de sílice (Le Maitre et al., 1989) y que permite obtener una clasificación basada en la composición química de las rocas volcánicas. Las rocas en estudio en dicho diagrama muestran que M27, M28 y M29 de la región de la Ramada, se ubican en el campo de las andesitas; M12 de Las Pichireguas se ubica en el límite de los campos de las andesitas y andesitas basálticas y M30 de La Laguna en el campo de las trauquinandesitas basálticas. Además, las andesitas de la región en general ocupan el mismo campo que las andesitas de la Formación Farellones.

El diagrama de Irvine y Baragar (1971), gráfica el total de álcalis en función de sílice, lo cual permite hacer una división entre las rocas de la serie de magmas calcalinos y de los subcalcálineos. Las rocas en estudio se ubican en el campo de las rocas subcalcálineos, en coincidencia con el campo de las andesitas de la Formación Farellones (véase figura 7).

Las rocas volcánicas de la serie magmática subcalcánea pueden ser divididas sobre la base de la concentración de K₂O y SiO₂, según el diagrama de Le Maitre et al. (1989). De esta forma, al plotear las rocas en estudio en dicho diagrama se observa que las muestras de La Ramada (M27, M28 y M29) se ubican en el campo de las andesitas (59,96-60,29 % SiO₂); la muestra de la brecha de Las Pichireguas (M12) se ubica en el límite de las andesitas y andesitas basálticas (56,88 % SiO₂) y que en general, todas presentan un contenido medio de potasio. La muestra de la Laguna (M30) se ubica en el campo de las andesitas (57,35% SiO₂) de alto potasio (véanse cuadros II a IV y figura 8).

El diagrama triangular AFM de Irvine y Baragar (1971) permite diferenciar dentro de las series magmáticas subcalcáneas a una serie calcélica con un fuerte enriquecimiento en hierro en los estadios tempranos de la diferenciación, de otra típicamente calcocalina. La secuencia volcánica analizada corresponde a una asociación de rocas calcocalinas y al igual que en los gráficos anteriores coincidirían con el campo de las andesitas de la Formación Farellones (figura 9).

El conjunto de rocas volcánicas desarrolladas en la región de la Ramada presenta características de serie magmática subcalcánea, con una marcada tendencia calcocalina, lo que sugiere un definido carácter de magmatismo de arco. Sin embargo, es interesante destacar algunas diferencias de campo que existen entre las andesitas del Espinacito - La Ramada (Ra1, Ra2, Ra3, RM2, RCH1, RST1, RST3, RST5, M27, M28 y M29), con respecto a la brecha andesita M12 de Las Pichireguas, la cual es similar a la de Las Hornillas. Ambas brechas andesíticas se encuentran en la base la columna terciaria de la cual forman parte, con inclinación de 25° al oeste; mientras que las andesitas del paso del Espinacito y La Ramada, se encuentran en posición subhorizontal y en discordancia sobre los depósitos mesozoicos y cenozoicos deformados. Esto indicaría que la brecha andesítica se habría depositado antes del levantamiento de los cordones del Espinacito y La Ramada y que junto con los depósitos terciarios fue deformada, y recién después se habrían depositado las andesitas del Complejo Volcánico La Ramada. Los datos de campo obtenidos permiten correlacionarla con otras andesitas tanto al norte como al sur de la región de estudio.

Teniendo en cuenta los diagramas hasta ahora analizados (Le Maitre et al., 1989; Irvine y Baragar, 1971), se ve que las muestras caen siempre en un campo común con las andesitas de la Formación Farellones de las regiones del Aconcagua, cerro Tórtolas y Pelambres (véanse figuras 6 a 9), lo que indicaría que en este sector de la cordillera, las andesitas de La Ramada representarían depósitos volcánicos con un ambiente similar al de la Formación Farellones.
Figura 10: Diagrama de distribución de tierras raras y elementos traza de las andesitas de La Ramada. Valores de normalización según Kay et al. (1987a).

Análisis de elementos traza y tierras raras

Estas muestras se han normalizado según el condrito de Leedey para poder compararlas con muestras de sectores adyacentes analizados por Kay et al. (1987a y b), Ramos et al. (1990c) y Kay et al. (1991). Los factores de normalización son: Cs (0,013), Rb (0,325), K (116), Ba (3,77), Sr (14), U (0,015), Th (0,05), Ta (0,022), La (0,378), Ce (0,976), Nd (0,716), Sm (0,23), Eu (0,0866), Tb (0,0589), Yb (0,249), Lu (0,0387).

En los diagramas de distribución de multielementos de tierras raras y elementos traza, se presentan las concentraciones normalizadas de las unidades volcánicas de La Ramada y otras unidades volcánicas miocénicas asociadas. Los diseños muestran un alto contenido en bario y torio y bajo contenido de tantalo con respecto al lanterio (véase figura 10), típico de un ambiente de arco, al igual que las estudiadas al norte y sur de esta región por Kay et al. (1987 a y b, 1991) y Ramos et al. (1990c).

Analizando las relaciones entre los elementos REE en las volcanitas de la región de La Ramada se observan altas razones Ba/La (23,71-33,45) y La/Ta (28,11-55,47) y muy alta razón La/Yb (14,36-22,09), con la excepción de M30 donde se ve una alta a moderada razón La/Yb (11,82). También se observa una alta razón La/Sm (4,56-5,62) y una baja anomalía negativa de Eu (Eu/Eu* =0,87-1,03) (véanse cuadros II y III y figuras 11 y 12). Estas relaciones indican características típicas de magmatismo de arco (Kay et al., 1987 a y b; 1991; Wilson, 1989; Rollinson, 1993).

La muestra M30 del arroyo de la Laguna se distingue por presentar características particulares. Esta roca comprende a un cuerpo subvolcánico andesítico (57,35 % SiO₂); presenta relaciones La/Yb y La/Sm similares a las otras muestras, pero tiene un muy alto contenido en K (21832 ppm) y en especial un muy alto contenido en Th (8,30) y U (2,30), lo cual es particularmente anómalo (véanse cuadros II a III y figura 10). Dos argumentos se han sugerido para la alta concentración de Th y U: 1) el Th es considerado
El volcanismo de la región de la Ramada

Figura 11: Relación Ba/La vs. La/Yb de las muestras de la región de La Ramada. Se plotean los campos de los equivalentes del sector chileno y argentino, en base a datos de Vergara et al. (1993); Kay et al. (1987a y b, 1991).

generalmente como uno de los elementos traza móviles, siendo extremadamente insoluble en fluidos hidrotermales y 2) las relaciones relativamente constantes entre los álcalis y el Th en muestras alteradas de diferentes localidades y el incremento relativo de estos elementos con el contenido de sílice sugiere un enriquecimiento tanto primario como secundario (Kay et al., 1987a).

Los cambios relacionados con la presión y la temperatura en el fraccionamiento y/o mineralogía de las rocas magmáticas, pueden ser inferidos en base a las características de sus elementos traza y en particular por sus REE (Kay et al., 1991). Diversos autores utilizaron las pendientes de las REE como patrones en el estudio de las rocas volcánicas de los Andes, para inferir la importancia del granate como residuo en la fuente (López-Escobar et al., 1977; Kay et al., 1987a y b, 1991). La figura 11 ilustra la relación La/Yb vs. Ba/La y para su comparación se presentan las muestras de las Formaciones Pelambres (Vergara et al., 1993), Doña Ana y Cerro Las Tórtolas (Kay et al., 1987a y b, 1991) y de Farellones de la región del Aconcagua (Kay et al., 1991).

Las relaciones Ba/La altas (–20), son generalmente aceptadas como indicadores de un origen de márgenes convergentes, aunque estas relaciones pueden también ser altas como producto de la contaminación cortical, o de fusión de un manto antiguo enriquecido en elementos lítvófilos (Ramos et al., 1989). A su vez, la relación La/Yb es una medida de la pendiente en el diseño de dis-

Figura 12: Relación La/Sm vs. La/Yb de las muestras de la región de La Ramada. Se plotean los campos de los equivalentes del sector chileno como en la figura 11.

tribución de tierras raras, la cual está fuertemente controlada por el porcentaje de granate y anfibol ya sea en la fuente magnmática o como minerales durante el fraccionamiento (Kay et al., 1987b; Ramos et al., 1990c, 1991b). Las rocas de la región bajo estudio ocupan un campo que se mezcla con las de la Formación Cerro de las Tórtolas y está por

Figura 13: Diagrama de Wood (1980) donde se identifica la típica asociación de arco magnético del Complejo Volcánico La Ramada, coincidente con el campo de la Formación Farellones del sector occidental.
Encima de las del Aconcagua y Doña Ana, siendo las rocas de Pelambres y la parte superior de Tórtolas las que ocupan los extremos (véase figura 11).

El diagrama de la figura 12 presenta la relación entre las razones La/Yb vs. La/Sm para las muestras en estudio y para su comparación y correlación, las muestras de las Formaciones Doña Ana y Cerro de Las Tórtolas (Kay et al., 1987a y b, 1991); Pelambres (Vergara et al., 1993), de la región del Aconcagua (Kay et al., 1991) y de la Formación Farelones de la región de la Ramada. El gráfico permite observar que las rocas de Pelambres tienen razones de La/Yb de 6,95 a 12,25; las de Aconcagua 10,2 a 4,8; mientras que las de la región de La Ramada presentan razones de 14,36 a 22,09; Doña Ana de 7,1 a 13,2; y Tórtolas arroja las razones de La/Yb de hasta 50,6; siendo éstas las más elevadas. Estas relaciones permiten observar que a nivel regional hay un claro aumento en la relación La/Yb desde las muestras de Pelambres, en la zona sur de la región, hasta las de Tórtolas, pasando por las de Aconcagua, Doña Ana y las de La Ramada.

Sobre la base de comparaciones químicas y mineralógicas y en particular sobre las razones La/Yb, Kay et al. (1991) sugirieron para el Terciario diferentes valores de engrosamiento cortical en relación al tiempo y dentro del segmento 28-33°S. Sobre esta base y los valores corticales obtenidos por Introcaso et al. (1992) se infieren para el Oligoceno tardío a Mioceno temprano, a los 28-31°S y con razones de La/Yb de 7 a 16, un engrosamiento corticial de 35 a 40 kilómetros. De los 16 a 11 Ma y 30°S, con razones de La/Yb de 15 a 50, se infiere un engrosamiento corticial de 40 a 60 kilómetros. Para el Mioceno tardío (10 Ma) y 30°S, con valores de La/Yb de 51 a 58, se interpretan espesores entre 60 y 65 km para la corteza a estas latitudes.

Teniendo en cuenta las relaciones La/Yb entre las volcanitas de La Ramada (La/Yb = 16-22) por un lado, y Las Hornillas y Pichireguas (La/Yb = 12 a 14) y La Laguna (La/Yb = 11.8) por otro, se observa un aumento en los valores de las razones La/Yb desde las rocas de las Hornillas y La Laguna hasta las de La Ramada. Esto estaría indicando un paulatino engrosamiento cortical desde la formación de la brecha andesítica hasta la erupción de las andesitas del macizo de La Ramada. Esta etapa final habría ocurrido hacia el Mioceno medio superior estimándose una corteza entre 50 y 60 kilómetros.

Discriminación geoquímica del ambiente tectónico

Del análisis comparativo de la distribución de los elementos traza de las unidades volcánicas de la región de La Ramada con sus similares de la región de Vacas Heladas-Cerro Tórtolas, tanto de Chile (Kay et al., 1987a y b), como de Argentina (Ramos et al., 1990c; Kay et al., 1991) se observa la existencia de una notable coherencia en la evolución magmática.

Dicha coherencia se puede ver en el diagrama de Wood (1980) donde se plotean las muestras del área de estudio y para su análisis se ha colocado el campo de las andesitas de la Formación Farellones. Así se observa que las muestras caen en el campo de rocas de asociaciones de arco magmática y dentro del subcampo calcoalcalino, y además dentro del campo de las andesitas de la Formación Farellones (véase figura 13).

Se pueden establecer ciertas similitudes y diferencias entre las rocas analizadas de la región de La Ramada.

Al analizar las rocas de la Andesita La Laguna (M00) se observa que comparada con las rocas de la Formación Infernillo, presenta cierta similitud en cuanto a los diseños
de las LREE y HREE, no presenta anomalía de europio y tienen menores contenidos de U y Th (véase figura 14a). Comparada con Tórtolas, la M30 tiene similares contenidos de U y Th, similar patrón de las LREE, pero el diseño de las HREE de M30 es menos empujado que Tórtolas, lo que indica que el momento de la formación de las andesitas de M30 la corteza no estaba estructurada y por consiguiente era menos potente que cuando se formaron las rocas de Tórtolas (véanse figuras 14b y 15a). Comparada con las rocas de Doña Ana, las rocas de La Laguna presenta patrones similares de LREE como de HREE (véase figura 15b).

Si se analizan las rocas de las lavas andesíticas de La Ramada, se ve que los patrones de LREE y HREE son similares a las rocas de Tórtolas y las del tope del Aconcagua, ubicándose en ambos casos el medio del campo de aquellas rocas. Si se las compara con respecto a las rocas de la base del Aconcagua y Doña Ana, se ve que ocupan siempre el borde inferior de los campos patrones (véanse figuras 16b a 17b).

Sobre la base de las comparaciones presentadas se infiere que las rocas andesíticas de La Ramada se podrían correlacionar con las del tope del Aconcagua y las del Tórtolas. Una base sólida para esta correlación es que las rocas del tope del Aconcagua arrojaron una edad de 8,9 Ma; las de Tórtolas 12,8 ± 0,4 Ma y las de La Ramada 10,7 y 12,7 Ma.

Los patrones de REE de las brechas andesíticas de las Hornillas y de las Pichireguas son muy similares a las rocas de Doña Ana ocupando el campo de éstas, pero a su vez presentan diferencias significativas con respecto a los patrones de las rocas de la base y tope del Aconcagua y Tórtolas. Sobre esta base se infiere que sería coherente correlacionar las brechas de las Hornillas y de las Pichireguas con las rocas de la Formación Doña Ana (véanse figuras 19 a y b).

La figura 18 sintetiza el comportamiento de las tierras raras en la región de La Ramada. Se nota una progresión constante en la pendiente de tierras raras pesadas (HREE) desde la región del retroarco con las brechas de Las Hornillas y Las Pichireguas,
CUADRO V: ESTRATIGRAFIA VOLCANICA DE LA REGION DE LA RAMADA Y SU RELACION CON LOS PRINCIPALES EVENTOS DE DEFORMACION

<table>
<thead>
<tr>
<th>EDAD</th>
<th>UNIDAD</th>
<th>EVENTOS PRINCIPALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior</td>
<td>Dacita Cerro Bayo del Cobre</td>
<td>Cese de la actividad volcánica del arco</td>
</tr>
<tr>
<td></td>
<td>Andesita Cerro Piramides</td>
<td>9.2 Ma</td>
</tr>
<tr>
<td></td>
<td>Complejo Volcánico La Ramada</td>
<td>10.7 Ma 12.7 Ma</td>
</tr>
<tr>
<td></td>
<td>Centros volcánicos póstumos</td>
<td>Migración hacia el este del Arco Volcánico</td>
</tr>
<tr>
<td></td>
<td>Filones capas andésiticas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estratovolcán La Ramada</td>
<td>Deformación sector central</td>
</tr>
<tr>
<td></td>
<td>Andesita La Laguna</td>
<td>Cuerpos Subvolcánicos de Retroarco</td>
</tr>
<tr>
<td>Medio</td>
<td>Formación Farellones</td>
<td>18.7 Ma Volcanismo de Arco</td>
</tr>
<tr>
<td></td>
<td>Brecha Andesítica Hornillas</td>
<td>19-20 Ma Volcanismo de Retroarco</td>
</tr>
</tbody>
</table>

a las andesitas La Laguna y en la región del arco con el Complejo Volcánico La Ramada y las Dacitas Bayo del Cobre. La única excepción serían las brechas andésiticas y dacitas de la Formación Farellones, que se apoyan en discordancia angular sobre la Formación Juncal, que tienen relaciones La/Yb (29 a 35) superiores a las típicas rocas de la Formación Farellones en Chile y más altas que las del Complejo Volcánico La Ramada. Si bien estas muestras se correlacionan con las aflorantes al oeste del límite en las nacientes del río Rocín, no se sabe con certeza su edad.

DISCUSION DE LOS RESULTADOS

Las relaciones de campo, así como las dataciones disponibles, junto a los datos geoquímicos han permitido reconstruir la historia volcánica de la región de La Ramada, que se resumen en el cuadro V.

La evolución geológica miocena de la comarca se inicia con el desarrollo de la Formación Farellones relacionada con un arco magmático, cuyo frente volcánico se ubicaba en el sector chileno adyacente al oeste y descripto por Rivano et al. (1993). En la región límite de además de las volcanitas se en-
cuentran depósitos asociados a episodios lacustres y depósitos continentales subaéreos (Moscoso et al., 1982). Este arco volcánico fue activo a partir de los 20 Ma.

Durante esa época en territorio argentino sólo se observan las manifestaciones más orientales del arco, en las proximidades de la cordillera del Límite, apoyadas en discordancia angular sobre las volcanitas mesozoicas de la Formación Juncal.

En la región de retroarco sólo se desarrollan manifestaciones aisladas de composición andesítica a basalto-andesítica, correspondientes a la Brecha Andesítica Hornillas, uno de los miembros basales de la Formación Chinchés de la cuenca de Manantiales, con una edad estimada de 19 a 20 Ma.

Con posterioridad se emplazaría el cuerpo subvolcánico de la Andesita La Laguna a los 15 Ma, el que de manera similar a las brechas anteriores lo haría en forma previa a la estructuración de este sector. Estas muestras tienen un comportamiento similar a las dacitas y andesitas de los alrededores de Barreal, descriptas por Leveratto (1976) y Kay et al. (1987a y b) con edades equivalentes.

La deformación de la faja plegada y corrida que se iniciaría en territorio chileno aproximadamente de 22 a 20 Ma, avanzó hacia el territorio argentino con posterioridad a los 15 Ma, involucrando a las rocas mesozoicas y cenozoicas previas.

Luego de la Formación Farellones existe un hiato en cuanto al volcanismo en el área bajó estudio, durante el desarrollo de la faja plegada y corrida de la Ramada de la Cordillera Principal, lo que produce un engrosamiento significativo de la corteza.

Con posterioridad a la deformación orogénica principal se emplaza el Complejo Volcánico La Ramada, culminando la actividad volcánica entre los 12 y 10 Ma, en relación de discordancia y con actitud subhorizontal por encima de todos los depósitos fallados y deformados del Mesozoico. El diseño emplazado de las HREE de las lavas andesíticas de la Ramada muestra una mayor influencia del granate en la fuente y por consiguiente en la formación de estas rocas, indicando un engrosamiento importante de la corteza previo a la erupción de las mismas.

Esta actividad es casi coetánea, aunque levemente más vieja que la Andesita Cerro Pirámide, que se emplaza a los 9,2 Ma, en forma concomitante con la actividad del Complejo Volcánico Aconcagua.

En territorio argentino la actividad volcánica póstuma está aparentemente registrada por las Dacitas Cerro Bayo del Cobre y cuerpos asociados, con los que culmina la actividad en el Mioceno superior. Estas dacitas son posteriores a la estructura principal de la comarca occidental, aunque algunos cuerpos ubicados al oeste del río de los Teatinos, son baseculados por un corrimiento fuera de secuencia posterior a su emplazamiento.

Esta variación temporal y espacial del volcanismo marca la horizontalización de la placa oceánica de Nazca a estas latitudes, antes del cese definitivo del volcanismo de arco entre los 32° y 32°30'S.

Este cese marcaría el inicio de la presente segmentación de la zona de Benioff y el desarrollo del segmento de subducción horizontal, que controló el levantamiento de la Alta Cordillera de San Juan y Mendoza al norte de los 34°S (Jordan et al., 1983 a y b).

AGRADECIMIENTOS

Los autores desean manifestar su reconocimiento a la Dr. S.M. Kay por los análisis efectuados y sus interesantes discusiones sobre el comportamiento geoquímico de las rocas volcánicas.
EL VOLCÁNISMO DE LA REGIÓN DEL ACONCAGUA

VICTOR A. RAMOS¹, SUZANNE M. KAY² Y DANIEL J. PÉREZ¹

¹ Laboratorio de Tectónica Andina, Universidad de Buenos Aires
² Department of Geological Sciences, Cornell University

INTRODUCCIÓN

La naturaleza volcánica del Aconcagua, así como su interpretación como un volcán ya sea activo o no activo, despertó una polémica que duró más de 150 años. El inicio de la misma se debió a las observaciones de un comerciante británico el 20 de enero de 1835, de apellido Byerbach, quien desde el puerto de Valparaíso en Chile, observó un volcán en erupción, asumiendo que correspondía al Aconcagua. Este comerciante tuvo oportunidad de contarle esta anécdota semanas después a Darwin, quien había tenido una experiencia similar al observar al volcán Osorno ese mismo día en erupción desde la bahía de Chiloé. Sobre esta base Darwin en repetidas oportunidades sustentó que el Aconcagua era un volcán activo, primero en sus sucintas presentaciones en la Geological Society of London (1839: 210-212); en su diario de viaje (1838: 356) y luego en su libro sobre la geología de América del Sur (1846). La autoridad académica que tuvieron las afirmaciones de Darwin hizo que durante muchos años no se haya puesto en duda que el Aconcagua era un volcán. En su catálogo de volcanes de la Argentina y Chile, Hauthal (1904), no duda en incluir al Aconcagua como un volcán.

La otra vertiente de la polémica procede de las exploraciones de Pissis, encomendado por el gobierno chileno de realizar observaciones geodésicas y topográficas en la región del Aconcagua. Este explorador comprobó que la base de este cerro estaba compuesta por rocas sedimentarias y que la cumbre presentaba rocas estratificadas. Sobre esta base afirmó que el Aconcagua no era un volcán y estaba compuesto exclusivamente por rocas sedimentarias (Pissis, 1852). En su Geografía Física de la República de Chile ilustra categoricamente al Aconcagua como constituido por rocas sedimentarias (Pissis, 1875). A esta interpretación se sumaron distintos naturalistas entre los que se destaca Burmeister (1875: 226; 1876: 367).

El primero en intentar escalarlo y realizar observaciones in situ fue Güssfeldt en 1883. Este explorador procediendo desde el norte ascendió el filo noroeste, hasta una posición por encima de los actuales refugios Berlín y Plantamura (6.100 m), como se infiere de sus descripciones litológicas. Sus observaciones de campo lo llevaron a interpretar la parte superior del Aconcagua como constituida por capas de areniscas, calizas y yeso, intercaladas con otras con aspecto de pórfidos (Güssfeldt, 1888: 291-296). Al observar la naturaleza estratificada del Aconcagua descartó que fuese un volcán y así lo dió a conocer en la Sociedad Geográfica de Berlín (Güssfeldt, 1883a). Sin embargo, pocos meses después de esta comunicación, realiza otra donde establece que el Aconcagua es un volcán (Güssfeldt, 1883 b). Su cambio de opinión se debió al análisis de las muestras petrográficas recogidas por él y estudiadas por Roth (1885). Este autor describió las muestras obtenidas por Güssfeldt en el flanco noroeste del Aconcagua entre 5.500 y 6.100 m. Describió pórfidos felsíticos con
hornblenda, tobas con augita y anfibol y una roca blanca producto de la actividad fumarólica con abundante yeso y azufre. Concluyó que sobre esta base si bien no alcanza para describir el Aconcagua como un volcán, si se puede afirmar con seguridad que estuvo afectado por el efecto de fumarolas (Roth, 1885: 285).

Los primeros en llegar a la cumbre fueron el guía Zurbriggen y un mes más tarde el geólogo Stuart Vines de la expedición de Fitz Gerald en 1897. Sobre la base de las observaciones efectuadas por estos Fitz Gerald (1898: 474-478) establece que el Aconcagua no se asemeja en nada a un cono volcánico. En su monografía final afirma que a pesar de la presencia de rocas volcánicas es erróneo interpretarlo como un volcán (Fitz Gerald, 1899: 30). Sin embargo Vines (1899: 121-122) en su descripción de la cumbre concluye que el Aconcagua son las ruinas colosales de un volcán profundamente erosionado.

Las primeras descripciones petrográficas de la cumbre, acompañadas por un análisis químico, fueron realizadas por Bonney (1899 a y b) sobre la base de las muestras de Vines. Ese autor describió la cima constituida por una andesita hornblendedica, quizás un dique o una lava, infiriendo que el cráter ha desaparecido enteramente por erosión. La composición la confirmó con un análisis químico realizado en los laboratorios del University College de Londres, que indican un porcentaje de sílice de 60.32 %.

A fines de 1898 Conway realizó un nuevo intento de escalar el Aconcagua. Si bien no llegó a la cumbre realizó algunas observaciones sobre el retroceso de los glaciares de los Horcones y fue el primero en describir la discordancia entre las series volcánicas de la cima y las rocas sedimentarias en posición subvertical (Conway, 1902). Las muestras colectadas por Conney fueron nuevamente estudiadas por Bonney (1901), destacando su carácter volcánico y el predominio de andesitas hornblendificadas.

Sin duda corresponde a Schiller realizar las más completas observaciones de la región del Aconcagua entre 1906 y 1909. Sus prolíficas observaciones le permitieron deshechar que el Aconcagua era un volcán, sobre la base de la falta de una morfología adecuada, el estar afectado por coludas andinas y ante la falta de erupciones o actividad fumarólica. Este autor interpretó que las noticias previas de actividad volcánica o fumarólica sólo eran masas de nieve pulverulenta levantada por...
lo vientos en sus aristas cercanas a la cumbre. Años más tarde Schiller intentó subir nuevamente al Aconcagua en 1940, 1943 y 1944, falleciendo en este último intento en una pequeña plataforma a 6,200 m de altura, conocida como Rucas Amarillas, ubicada a menos de un centenar de metros del actual refugio Berlin (Sekelj, 1944).

La hipótesis que consideraba al Aconcagua como un volcán, vuelve nuevamente con Fossa Mancini (1947). Este autor, exclusivamente sobre la base de una extensa iconografía del cerro, obtenida de las más diversas fuentes, concluyó que las supuestas cobiaduras de Schiller (1912), que afectaban al Aconcagua no eran tales y destacó el carácter horizontal que presenta la cobertura volcánica, vista desde varios frentes. Esta interpretación errónea se debió al ángulo de observación de las fotografías, dado que desde el noroeste o el sudeste, direcciones normales al rumbo, presenta una inclinación aparente cercana a cero (figura 1). No hay duda que las rocas de la cumbre se hallan basculadas al oeste-sudoeste y al este hasta de 2 a 5°, como se observa desde la plataforma 5.200 o desde el portezuelo del Manso (Ramos et al., 1985). Fossa Mancini (1947) argumentó que las cobiaduras sí las hubo, deberían ser anteriores a la cobertura volcánica del Aconcagua. Este autor concluyó que el Aconcagua era un volcán exinguído e in situ, no estando afectado por tectónica alguna que hubiera modificado su yacencia original, planteando dudas con respecto a los corrimientos que lo delimitan (figura 2).

Sin embargo, las ideas de Schiller sobre la naturaleza alóctona de la masa volcánica del Aconcagua, habían sido ampliamente aceptadas por Gerth (1926: 93), Kühn (1922, 1927), Groeben (1929) y Windhausen (1931: 358-359). Fossa Mancini (1947) destacó que ninguno de estos autores había examinado al Aconcagua personalmente (el tampoco), con excepción de Kühn (1914) al remontar el río de las Vacas y descalificó a estos geólogos europeos propensos a ver cobiaduras en todas partes.

La hipótesis que consideraba al Aconcagua como una cobertura volcánica desarrazada, se afirmó en los estudios de Yrigoyen (1976), quien demostró que tanto al este como al oeste del Aconcagua hay sendos corrimentos negados por Fossa Mancini (1947), que basculan el macizo volcánico. Estas aprecia-
CERRO ACONCAGUA
Datableces K/Ar

ciones fueron ampliamente confirmadas por los estudios efectuados tanto en la pared oriental del macizo, como en la cumbre (Ramos et al., 1985, Ramos y Irigoyen, 1987).

La hipótesis de Fossas Mancini (1947) fue parcialmente revalorizada por Godoy et al. (1988), quienes reconocieron restos del gran aparato volcánico mioceno durante el ascenso a la cumbre. Estos autores distinguieron en su figura 1 la extensión de los afloramientos del volcán Aconcagua, no dejando de reconocer las fallas que hacia el este y oeste han desplazado la cobertura volcánica.

COMPLEJO VOLCÁNICO ACONCAGUA

Los distintos autores que estudiaron el macizo del Aconcagua han asignado su cobertura volcánica a diferentes series estratigráficas. Schiller (1912) no tenía elementos para discernir si eran andesitas (terciarias o cuaternarias) o porfiritas (rocas precenozoicas en la nomenclatura de la época), asignándolas ya sea al Terciario inferior o al Cretáceo superior, respectivamente.

Para Gerth (1926) la cobertura volcánica correspondía a la serie andesítica del Terciario inferior, siendo el Conglomerado de Santa María de edad miocena. Para Groeber (1929) estas andesitas correspondían a esfuerzos volcánicos miocenos, por correlación con lo que ocurre al sur de Mendoza. Este criterio fue compartido por Fossas Mancini (1947) para quien el Aconcagua era un volcán mioceno.

Irigoyen (1976 y 1979) correlacionó la cobertura volcánica con la Formación Abanico de edad cretácica superior, sin descartar que en la parte superior puedan existir rocas terciarias más jóvenes.

Auboin y Borrello (1966) asignaron las rocas volcánicas del Aconcagua a la Formación Farellones del Terciario inferior, propuesta compartida por Munizaga y Vicente (1982). Sin embargo, estos autores presentaron nuevas edades en el sector chileno adyacente, así como algunas edades del lado argentino, que les permitieron reinterpretar a la Formación Farellones como de edad miocena.

Este criterio fue compartido por los autores posteriores que asignaron a la Formación Farellones la cobertura volcánica del Aconcagua (Ramos et al., 1985, 1989, 1991b; Ramos y Irigoyen, 1987).

Sin embargo cuando se observa el rango de edades de la Formación Farellones en territorio chileno (Rivano et al., 1990) y se las compara con las obtenidas en territorio argentino (Ramos et al., 1991b), es evidente
Figura 4: Vista aérea de la cumbre del Aconcagua, la pared sur y la sección entre Plaza de Mulas, plataforma 5.200 y refugio Berlin, con los puntos de muestreo.
que si bien puede haber cierto traslape temporal, el volcanismo en el sector chileno es más antiguo y termina antes que en el sector argentino. Las características litológicas entre ambas series volcánicas son diferentes, así como sus propiedades geoquímicas.

Sobre esta base es que se decidió separar las volcanitas del Aconcagua como un complejo volcánico independiente, asociado temporal y espacialmente a una expansión hacia el antepais del magmatismo de arco del sector chileno.

Distribución y litología

Las relaciones que presenta este complejo volcánico con el substrato sedimentario son de marcada discordancia angular. Esta discordancia está expuesta en forma conspicua en la pared sur del Aconcagua donde ha sido observada por Conway (1902), Schiller (1912) e Yrigoyen (1976). En ésta se observan las areniscas rojas de la Formación Diamante y el Grupo Mendoza fuertemente plegados y truncados por el plano de discordancia.

La secuencia volcánica, si bien se pone subhorizontal en la parte superior del cerro, hacia el sector occidental aumenta su inclinación hacia el oeste-sudoeste, alcanzando valores de más de 20° al norte de la quebrada Sargentó Mas, en el sector oriental de la quebrada Ancha. Diversos autores reconocieron discontinuidades en la secuencia volcánica, algunas con marcada angularidad entre los distintos paquetes de volcanitas y rocas piroclásticas (Groeben, 1951; Yrigoyen, 1976; Ramos et al., 1985). La más conspicua se observa entre Plaza de Mulas superior y la plataforma 5.200. Esta ha sido interpretada como una discontinuidad primaria dentro de secuencias superpuestas en un aparato volcánico. Otras angularidades más localizadas, como las que se observan sobre la ladera oriental de la quebrada de los Horcones superior pueden estar relacionadas a fallas secundarias, como en parte lo confirma la presencia de grijones de yeso, altamente deformados.

Con respecto a la litología se pueden distinguir dos unidades diferentes dentro del complejo: lavas, brechas y rocas piroclásticas pertenecientes a un antiguo estratovolcán y cuerpos subvolcánicos de dacitas y andesitas.

Lavas, brechas y rocas piroclásticas

Son las rocas dominantes en el macizo del Aconcagua. Se pueden distinguir dos secciones de similar composición.
La sección inferior tiene un espesor de 2.500 m y está compuesta por brechas andesíticas, aglomerados volcánicos y tobas con intercalaciones de lavas de dacita y andesita. Uno de los perfiles más completos se observa en la arista noroeste del Aconcagua, desde Plaza de Mulas superior a la cumbre (figuras 3 y 4). La secuencia se inicia con aglomerados y brechas de composición andesítica, con clastos de hasta 20 cm cementados en una matriz volcánica de textura porfírica (figura 5). En la secuencia se alternan lavas porfíricas de composición dacítica con fenocristales de plagioclás, fuertemente alterados a arcillas y sericitá; el mineral máfico es biotita, completamente reemplazada a clorita y un mineral opaco. La pasta tiene plagioclás argilitizada y microcristales de cuarzo y se halla fuertemente limonitizada. También se observa jarosita en agregados finos (Godeas y Pezzutti, 1986).

Estas rocas se intercalan con brechas andesíticas, con clastos y matriz de igual composición, en parte completamente propilitizada.

La sección superior está más finamente estratificada y está constituida por tobas de variada composición, flujos piroclásticos gruesos y lavas (figura 5). Su espesor hasta la cumbre es de 1.500 m y se caracteriza por sus colores rojizos, producto de la abundante limonita presente en estas rocas.

En las proximidades del refugio Berlin se observan mantos de andesita porfírica de colores gris claro y oscuro, con pasta afánítica. Los fenocristales son tablillas idiomórficas de plagioclás, fuertemente caolinizados y con moderada sericitización. El anfibol se encuentra reemplazado por clorita y epidoto. La pasta formada por feldespato alcalino y plagioclás se halla caolinizada, con abundantes minerales opacos. En otras muestras predomina el piroxeno del grupo del diópido, con anfibol subordinado. Es común la presencia de amigdulas rellenas con carbonatos y cuarzo (Sacomani, 1986).

La secuencia se halla intensamente alterada. Godoy et al. (1988) han descripto venillas de cuarzo-anhidrita y pequeños parches de stockwork con piritita en lavas andesíticas blanqueadas por alteración argilíca avanzada. Estos autores han reconocido natroalunita microcristalina y caolinita en zonas reemplazando completamente las plagioclásicas. En los halos de las venillas abunda el cuarzo microcristalino sobre la anhidrita, esta última en distintas etapas de hidratación. Las rocas más alteradas incluyen numerosos contornos de anfibol compactos por leucoxeno o un agregado de goethita.
y espeno, producto de la alteración de la titanomagnetita. Al sudeste del portezuelo del Manso se han observado tubos abiertos de 2 a 3 cm de diámetro y en posiciones subverticales recubiertos por pátinas amarillas. Estos tubos han sido interpretados como originados por escapes de gases, en una etapa solfatérica relicíctica.

En la parte superior de la cumbre se ha observado que la toba andesítica está surcada por vidrio verde reducido. Godoy et al. (1988) han interpretado a estas rocas como fulguritas, en forma similar a las descriptas por Bonney (1901a) para la cumbre del volcán Tupungato.

En la pared sur se observa principalmente la sección inferior, en marcada discordancia angular sobre las rocas mesozoicas (figura 6).

Pórfidos dacíticos y andesíticos

En la secuencia lávica y piroclástica anterior se interponen cuerpos hipabásicos, filones capa y díques discordantes de pórfidos andesíticos y dacíticos. Al este de Plaza de Mulas se puede observar unos de estos cuerpos de andesita intruidos en las brechas y aglomerados de la secuencia anterior (figura 7).

Estos cuerpos suelen estar asociados a halos de alteración hidrotermal, como se observa en las nacientes del río de las Vacas.

Uno de los cuerpos más conspicuos constituye la escarpa que une el pico sur con el pico principal del Aconcagua (véase figura 4). Este cuerpo intrusivo de composición andesítica constituye un filón capa que le confiere a la cumbre una resistencia adicional. Las rocas que componen la cumbre son andesitas muy alteradas, con fuerte exfoliación por meteorización, que contrasta con el aspecto tenaz de los filones capa. La composición y características geoquímicas son similares a las de las rocas volcánicas y piroclásticas previamente descriptas.

Edad

Hasta que se obtuvieron las primeras dataciones del Complejo Volcánico Aconcagua, la edad de estas rocas volcánicas variaba entre Cretácico superior (Yrigoyen, 1976), Terciario inferior (Auboin y Borrello, 1966), e inclusivo hasta Mioceno, como fue inferido por Fossa Mancini (1947). Con la re asignación al Mioceno en el sector chileno de la Formación Farellones (Munizaga y Vicente, 1982) y las primeras dataciones
CUADRO I: EDADES K/Ar DE ROCAS IGNEAS DE LA REGIÓN DEL ACONCAGUA

<table>
<thead>
<tr>
<th>UNIDAD</th>
<th>MUESTRA</th>
<th>METODO</th>
<th>% K</th>
<th>Ar 40 rad</th>
<th>% Ar Atm</th>
<th>Edad (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobas del Conglomerado Santa María</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesita de la cumbre</td>
<td>PV3</td>
<td>RT</td>
<td>2.02</td>
<td>0.64</td>
<td>66.0</td>
<td>8.1 ± 0.6</td>
</tr>
<tr>
<td>Andesita de la Canaleta (6800 m)</td>
<td>AC-2</td>
<td>Hornb.</td>
<td>0.48</td>
<td>0.20</td>
<td>53.7</td>
<td>9.63 ± 0.44*</td>
</tr>
<tr>
<td>Portezuelo del Viento (6700 m)</td>
<td>M103</td>
<td>RT</td>
<td>1.60</td>
<td>0.55</td>
<td>59.0</td>
<td>8.9 ± 0.5</td>
</tr>
<tr>
<td>Refugio Berlín (6100 m)</td>
<td>M56</td>
<td>RT</td>
<td>1.58</td>
<td>0.59</td>
<td>64.72</td>
<td>9.6 ± 0.4</td>
</tr>
<tr>
<td>Filón andesítico (Plataforma-5200 m)</td>
<td>M57</td>
<td>RT</td>
<td>1.43</td>
<td>0.62</td>
<td>74.78</td>
<td>11.12 ± 0.9</td>
</tr>
<tr>
<td>Dacita (Plataforma-5200 m)</td>
<td>M85</td>
<td>RT</td>
<td>1.49</td>
<td>0.57</td>
<td>57.05</td>
<td>9.8 ± 0.3</td>
</tr>
<tr>
<td>Dique de dacita (4400 m)</td>
<td>M86</td>
<td>RT</td>
<td>1.48</td>
<td>0.65</td>
<td>72.67</td>
<td>11.3 ± 0.5</td>
</tr>
<tr>
<td>Andesita (4350 m)</td>
<td>M88b</td>
<td>RT</td>
<td>1.52</td>
<td>0.61</td>
<td>56.44</td>
<td>10.3 ± 0.3</td>
</tr>
<tr>
<td>Andesita (4350 m)</td>
<td>M88a</td>
<td>RT</td>
<td>1.64</td>
<td>0.66</td>
<td>48.66</td>
<td>10.3 ± 0.3</td>
</tr>
<tr>
<td>Dique de dacita (4300 m)</td>
<td>M89</td>
<td>RT</td>
<td>2.17</td>
<td>0.81</td>
<td>76.6</td>
<td>9.6 ± 1.4</td>
</tr>
<tr>
<td>Dacita (4250 m)</td>
<td>M90</td>
<td>RT</td>
<td>1.70</td>
<td>1.05</td>
<td>47.18</td>
<td>15.8 ± 0.4</td>
</tr>
<tr>
<td>Andesita Plaza de Mulas Superior</td>
<td>M91</td>
<td>RT</td>
<td>1.66</td>
<td>0.67</td>
<td>62.20</td>
<td>10.3 ± 0.4</td>
</tr>
<tr>
<td>Dique al este de Plaza de Mulas</td>
<td>M93</td>
<td>Biotita</td>
<td>1.74</td>
<td>0.93</td>
<td>83.5</td>
<td>8.5 ± 0.2</td>
</tr>
<tr>
<td>Dacita Plaza de Mulas</td>
<td>M92</td>
<td>RT</td>
<td>1.74</td>
<td>0.93</td>
<td>83.5</td>
<td>13.7 ± 1.8</td>
</tr>
<tr>
<td>Dique Tolosa oriental</td>
<td>M70</td>
<td>Plag.</td>
<td>2.01</td>
<td>1.12</td>
<td>74.0</td>
<td>14.3 ± 1.0</td>
</tr>
<tr>
<td>Roca de caja quebrada Matienzo</td>
<td>5912</td>
<td>RT</td>
<td>1.70</td>
<td>1.39</td>
<td>77.18</td>
<td>20.9 ± 3.0</td>
</tr>
<tr>
<td>Granodiorita Matienzo</td>
<td>5907</td>
<td>Biotita</td>
<td>5.23</td>
<td>4.42</td>
<td>11.82</td>
<td>21.5 ± 1.0</td>
</tr>
<tr>
<td>Porfido granodiorítico Rio Vacas</td>
<td>8336</td>
<td>Biotita</td>
<td>7.79</td>
<td>2.62</td>
<td>35.3</td>
<td>8.5 ± 0.2</td>
</tr>
</tbody>
</table>

* Datos recogidos en el Laboratorio de Geospondología del SERNAGEOMIN, Santiago de Chile.
** Datos recogidos en la Universidad de Berkeley según Godoy et al. (1988).
*** Datos recogidos en el Instituto de Geosondología de la Universidad de Sao Paulo.

del Aconcagua, se confirmó esta edad para el macizo (Ramos et al., 1985). Las edades actualmente disponibles se ilustran en el cuadro I.

El análisis de esta información permite inferir que la secuencia volcánica tiene una edad mínima más antigua de 15.8 Ma. La edad más probable de la sección inferior varía entre 13.7 a 11.3 Ma. Es necesario destacar que se observan edades menores, que pueden estar relacionadas a pérdidas de argón durante el proceso de alteración o por rejuvenecimiento producido por los numerosos cuerpos hipabiales y filones que se emplazan en el complejo volcánico. La secuencia superior variaría entre 11.1 y 9.6 Ma. La edad obtenida en la muestra 103, procedente de la parte superior de la canaleta, se interpreta como perteneciente a los filones andesíticos que intruyen las rocas de la cumbre con edades que oscilan entre 8.9 y 8.5 Ma. Las figuras 3 y 4 presentan los resultados obtenidos.

OTRAS MANIFESTACIONES IGNEAS DE LA REGIÓN

Si bien el centro volcánico del Aconcagua reúne la actividad principal de la comarca, existen evidencias de magmatismo terciario en los sectores al oeste y sur de este cerro. El cuadro II resume la actividad magmática y los principales eventos tectónicos asociados a la misma.

Granodiorita Matienzo

Este plutón aflora en la parte media occidental de la quebrada Benjamin Matienzo, en las nacientes del río Cuevas y ha sido descripto por Ramos y Cingolani (1989). Los afloramientos se encuentran en la vertiente oriental del cordón del Llimite, entre los portezuelos Potrero Escondido y Lomas Colaradas. Se hallan a unos 10 km al noroeste de la localidad de Las Cuevas, frente al refugio Matienzo.
La Granodiorita Matienzo constituye un stock elongado de 2.200 m de largo por unos 500 m de ancho formado por una roca granosa alotriomorfa e inequigranular. El grano es mediano alcanzando hasta 5 mm de diámetro. El componente principal es plagioclasa con anfibol intercrecida con piroxeno, biotita, ortosa, cuarzo y un mineral opaco. La plagioclasa es una oligoclasa cálcica con zonalidad múltiple directa. En sectores presenta reemplazos albíticos y una alteración leve a moderada a agregados de caolinita y sericitas con escasa limonita. La ortosa está inalterada así como el cuarzo de aspecto limpio y extinción ondulante. La hornblenda se halla intercrecida con un clinopiroxeno y está acompañada con biotita de color castaño intenso. Hay pequeños gránulos de minerales opacos, apatita y circon (Sacomañi, 1986).

La roca dominante es una granodiorita, aunque se observan también variedades dioríticas con afinidades gábricas y productos más diferenciados de composición monozonítica.

Los contactos son visibles pero inaccesibles. Se los ha interpretado como intrusivos en las calizas del Grupo Mendoza y en las volcanitas mesozólicas.

La edad de este cuerpo establecida por Ramos y Cingolani (1989), indica una edad de 21.6 ± 1.0 Ma. Es interesante destacar
que la roca de caja volcánica dio una edad de 20.9 ± 3.0 Ma la que ha sido interpretada por estos autores como un rejuvenecimiento producido por la intrusión de la granodiorita. Esta edad ha sido interpretada por Ramos et al. (1991b) como una edad de enfriamiento, asociada al levantamiento del cordón del Límite.

Cuerpos similares han sido descriptos en el territorio chileno adyacente al oeste por Aguirre et al. (1974) y por Munizaga y Vicente (1982).

Traquitas Puente del Inca

Bajo esta denominación Schiller (1912) incluyó a los filones que afloran en ambas laderas de Puente del Inca. La figura 8 ilustra la sección tipo de las Traquitas Puente del Inca. Se ha mantenido la denominación original de Schiller (1912), dado que los análisis químicos disponibles de estas rocas las ubican en el diagrama de Le Maitre en el campo de las traquitas (véase figura 9), a pesar que su composición petrográfica varía entre lacita cuarcífera y dacita.

Se hallan intruyendo a todas las rocas mesozóicas previas. En la quebrada del Hombre Cojo o de La Avalancha, frente a la localidad de Las Cuevas, se observan estos filones asociados a unos lentes sigmoidales de varios metros de espesor. Estos cuerpos sigmoidales han sido interpretados como venas de zonas de cizalla (shear zone veins) asociadas a una dilatación negativa, consistente con la orientación de esfuerzos compresivos que originaron los corrimientos de la región.

Del punto de vista petrográfico están compuestos por una pasta afanítica con pequeños fenocristales de plagioclase. La textura es traquitica, caracterizada por tablillas orientadas de plagioclase y de feldespato alcalino subordinado, con intersticios ocupados por cuarzo microcristalino, en porcentajes tan bajos, como para considerarlo como accesorio. Hay relictos de fenocristales observables como concentraciones de muscovita, cuarzo y un mineral opaco (Sacomani, 1986). La composición de las muestras analizadas varía de lacita cuarcífera a dacita.

La primer datación K/Ar de estas rocas fue efectuada por Munizaga y Vicente (1982).
quienes dataron el filón capa que aflora en la ladera norte de Puente del Inca, cerca del valle inferior de Los Horcones. Esta muestra arrojó una edad de 15 ± 1 Ma en roca total. Una segunda muestra datada en plagioclasa, procedente de las nacientes de la quebrada Tolosa Oriental arrojó una edad de 14.3 ± 1.0 Ma (determinación realizada en el SERNAGEOMIN de Santiago de Chile).

CARACTERISTICAS GEOQUIMICAS DE LAS VOLCANITAS

Se han realizado análisis de elementos mayoritarios, trazas y tierras raras de la secuencia de la sección inferior y superior, y de los pírfidos andesíticos y dacíticos que las intruyen (véanse cuadros III a IV). Los análisis fueron realizados en el laboratorio del INSTOC, de la Universidad de Cornell, U.S.A., y se obtuvieron por los métodos de activación neutrónica (INAA) y microsonda electrónica (véase para detalles analíticos a Kay et al., 1991). Parte de estos resultados fueron analizados parcialmente en Ramos et al. (1985) y Kay et al. (1991).

Las muestras del Complejo Volcánico Aconcagua muestran una cierta homogeneidad composicional, variando de andesitas a dacitas con un tenor de sílice entre 58 y 69 % (véase figura 9). El contenido de K$_2$O varía entre 1.68 y 2.44 %, notándose un incremento de K$_2$O en los pírfidos y diques intrusivos póstumos. Estas rocas presentan un tren calcoalcino característico como se destaca en el diagrama AFM de la figura 10, con los términos más diferenciados asociados a los pírfidos andesíticos y dacíticos que intruyen toda la secuencia volcánica.

Cuando se plotean los análisis en el diagrama de Wood (1980), se observa la típica característica de asociación de arco volcánico vinculada a subducción en corteza continental en la totalidad de las muestras (figura 11).

Los diagramas de distribución de tierras raras y elementos trazas muestran un comportamiento homogéneo, con características enriquecimientos relativos de La en relación a Ta, junto con valores más altos de elementos incompatibles típicos de regiones de arcos magmáticos de márgenes destructivos. Es interesante notar el comportamiento similar de la sección superior con respecto a la inferior (compárense figuras 12 y 13), lo que apoyaría la interpretación de que la an-
El volcanismo de la región del Aconcagua

CUADRO III: ANALISIS QUIMICOS DE LA SECCION INFERIOR Y DE LOS CUERPOS HIPABISALES DEL COMPLEJO VOLCANICO ACONCAGUA

<table>
<thead>
<tr>
<th>Muestra</th>
<th>INTRUSIVOS</th>
<th>SECCION INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M104</td>
<td>M93</td>
</tr>
<tr>
<td>SiO2</td>
<td>59.04</td>
<td>63.32</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td>AI2O3</td>
<td>17.15</td>
<td>17.10</td>
</tr>
<tr>
<td>FeO</td>
<td>5.44</td>
<td>4.48</td>
</tr>
<tr>
<td>MnO</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>4.55</td>
<td>2.62</td>
</tr>
<tr>
<td>CaO</td>
<td>6.24</td>
<td>4.54</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.29</td>
<td>4.75</td>
</tr>
<tr>
<td>K2O</td>
<td>2.27</td>
<td>2.37</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>99.98</td>
<td>99.69</td>
</tr>
</tbody>
</table>

Ce	35.40	42.00	53.40	39.50	40.80	37.80	45.10	51.30	39.50	40.60
Nd	16.80	22.80	27.90	21.00	21.90	19.20	20.70	24.70	19.90	19.60
Sm	3.90	4.26	5.18	3.91	4.41	4.18	4.16	5.01	3.94	4.51
Eu	1.00	0.91	1.09	1.05	1.15	1.00	1.09	1.07	0.85	1.07
Tb	0.52	0.52	0.65	0.42	0.49	0.52	0.57	0.58	0.45	0.58
Yb	1.61	1.86	2.45	0.94	1.35	1.81	1.85	1.96	1.68	2.14
Lu	0.23	0.27	0.36	0.14	0.20	0.24	0.27	0.29	0.24	0.31

Sr	424	483	432	394	397	484	402	613	591	451
Ba	3.15	1.23	4.81	5.41	1.90	1.90	4.30	1.60	1.50	2.45
Cs	1.11	2.30	3.06	1.24	1.35	1.80	1.67	1.80	2.90	1.41
U	3.89	5.78	8.44	3.97	4.63	5.40	6.20	6.60	6.30	4.17
Th	3.36	3.75	5.24	3.89	3.81	3.30	4.30	4.50	3.60	4.10
Hf	0.58	0.66	0.00	0.61	0.60	0.73	0.00	0.60	0.60	0.69
Ta	17	12	9	10	15	12	17	7	10	18
Sc	182	15	11	28	70	18	90	16	21	107
Cr	49	9	6	7	22	0	28	2	12	27
Ni	21	12	10	8	20	9	20	4	10	19

FeO/MgO	1.20	1.71	4.59	5.55	3.74	3.83	1.35	18.3	1.46	1.50
K2O/Na2O	1.89	2.00	1.55	2.04	2.08	0.52	2.42	0.69	0.53	2.07
Ba/La	25.9	22.6	16.5	19.8	19.8	25.08	21.5	26.31	30.15	23.0
La/Sr	4.2	5.0	5.0	5.1	4.5	4.6	4.5	4.5	5.0	4.3
La/Yb	10.2	11.5	10.7	12.2	14.8	10.7	10.1	11.9	11.7	9.2
Eu/Eu*	0.85	0.73	0.71	0.96	0.91	0.79	0.86	0.72	0.73	0.79
Ba/Ta	0.737	7.33	413	649	661	663	387	681	856	674
La/Ta	28	32	25	33	33	26	18	26	28	29
143Nd/144Nd	0.512521									
eNd	-0.26									
87Sr/86Sr	0.704245									

Muestras 93, 94 y 104: intrusivos de la región de Plaza de Mulas.
Muestras 85 a 92: sección inferior de la arista noroeste del Aconcagua.
CUADRO IV: ANÁLISIS QUÍMICOS DE LA SECCIÓN SUPERIOR DEL COMPLEJO VOLCANICO ACONCAGUA

<table>
<thead>
<tr>
<th>Muestra</th>
<th>SECCION SUPERIOR</th>
<th>TRAQUITAS PUENTE DEL INCA</th>
<th>FILONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M57</td>
<td>M103</td>
<td>M102</td>
</tr>
<tr>
<td>SIO2</td>
<td>60.40</td>
<td>60.76</td>
<td>60.41</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.65</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td>AI2O3</td>
<td>18.77</td>
<td>17.87</td>
<td>18.09</td>
</tr>
<tr>
<td>FeO</td>
<td>4.89</td>
<td>4.91</td>
<td>5.12</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>2.64</td>
<td>3.04</td>
<td>2.79</td>
</tr>
<tr>
<td>CaO</td>
<td>6.23</td>
<td>6.30</td>
<td>6.01</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.69</td>
<td>4.57</td>
<td>4.93</td>
</tr>
<tr>
<td>K2O</td>
<td>1.63</td>
<td>1.78</td>
<td>1.86</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.01</td>
<td>100</td>
<td>100.01</td>
</tr>
</tbody>
</table>

La	18.70	20.40	22.10	21.30	22.60	16.40	20.30	31.20	20.80	24.40
Ce	40.70	44.40	46.40	45.00	45.30	38.90	40.80	65.20	48.60	53.90
Nd	18.80	18.00	24.20	23.30	27.30	19.00	19.00	31.50	25.00	29.20
Sm	4.00	4.16	4.66	4.47	5.33	3.38	3.31	5.64	4.48	5.97
Eu	1.02	1.01	1.00	0.94	1.29	0.71	0.83	1.20	1.13	1.38
Tb	0.46	0.52	0.51	0.49	0.56	0.29	0.28	0.68	0.58	0.67
Yb	1.43	1.60	1.80	1.69	1.71	0.86	0.90	2.63	2.10	1.98
Lu	0.20	0.22	0.28	0.24	0.24	0.12	0.11	0.37	0.31	0.27
Sr	0	672	0	0						
Ba	541	464	529	525	379	988	865	750	965	1134
Ce	0.68	1.09	0.74	1.08	0.70	0.60	1.30	1.20	3.50	0.60
U	1.07	1.13	1.52	1.32	1.80	1.40	1.90	1.90	1.30	1.70
Th	3.64	4.20	4.98	4.70	5.70	4.10	4.00	7.80	5.20	5.80
Hf	3.68	3.71	4.03	3.76	4.60	4.20	3.60	5.00	4.70	4.70
Ta	0.59	0.46	0.61	0.61	0.72	0.49	0.42	0.77	0.72	0.59
Sc	10	11	11	11	15	4	5	8	10	8
Cr	9	9	7	8	110	8	21	11	18	4
Ni	6	12	13	10	31	6	6	7	8	6
Co	14	14	25	26	26	5	4	9	13	8

<table>
<thead>
<tr>
<th>RAZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO/MgO</td>
</tr>
<tr>
<td>K2O/Na2O</td>
</tr>
<tr>
<td>Ba/La</td>
</tr>
<tr>
<td>La/Sr</td>
</tr>
<tr>
<td>La/Yb</td>
</tr>
<tr>
<td>Eu/Eu*</td>
</tr>
<tr>
<td>Ba/Ta</td>
</tr>
<tr>
<td>La/Ta</td>
</tr>
</tbody>
</table>

| Isotopos | |
|----------|
| 143Nd/144Nd | 0.512621 |
| eNd | -0.33 |
| 87Sr/86Sr | 0.704460 |
| Edad | 8.9 ± 0.5 |

Sección superior: M57: Refugio Berlin; M103: La Canaleta; M102: Cornisa Intermedia; M101: Cumbre. Traquitas Puente del Inca: M69 y 70: cerro Tolosa; M108: cerro México; M106: cerro Promontorio; M105: oeste de Plaza de Mulas.
Figura 10: Diagrama AFM con los límites entre los campos calcoalcalinos y tholeíticos (Irvine y Baragar, 1971). Se plotea el campo de la Formación Farellones para comparación.

regularidad entre las dos series es un rasgo volcánico primario y no una discordancia de origen tectónico. Ambas series han sido formadas en condiciones de presión similares, no mediando entre ambas variaciones significativas del espesor cortical.

Cuando se observan las relaciones La/Sr vs. La/Yb todas las muestras analizadas se agrupan en un campo común con relaciones La/Yb entre 9 y 15 (figura 14).

Figura 11: Diagrama de Wood (1980) donde se observa la típica asociación de arco magmático del Complejo Volcánico Aconcagua.

Las únicas excepciones corresponden a los filones de Puente del Inca (M102: 15 Ma) y del cerro Tolosa (M70: 14,3 Ma) (figura 15), correspondientes a las Traquitas Puente del Inca, que son las que presentan valores más altos, a pesar de presentar edades más antiguas, aunque debe destacarse su mayor contenido en sílice. Otra muestra de comportamiento anómalo es la M90, procedente de la sección inferior del Aconcagua y que corresponde a una edad de 15,8 Ma. Cuando
se comparan las muestras del Complejo Volcánico Aconcagua con las del Complejo Volcánico La Ramada, se observa que ambos conjuntos tienen características litológicas similares y rango de edades afines. Las anDESitas del cerro Pirámide, no sólo son geográficamente más cercanas a las del Aconcagua, que a las de La Ramada, sino que su edad y características geoquímicas muestran una perfecta correlación.

Sin embargo, cuando se comparan las relaciones La/Yb para una relación La/Sm dada entre los complejos volcánicos del Aconcagua y La Ramada, se observa que estos últimos tienen valores más altos. Esto sugiere que las muestras del Complejo Volcánico La Ramada se equilibraron en condiciones de mayor presión durante su formación, en una corteza más potente. Dado el rango de edades similares entre ambos complejos (véase cuadro V), ello implicaría que el acortamiento orogénico avanzó de norte a sur y que la región del Aconcagua alcanzó el actual espesor cortical (65 km, Introcaso et al., 1992) con posterioridad al emplazamiento volcánico. A su vez si se tiene presente la pendiente de tierras raras pesadas de la sección inferior y se la compara con las del volcánismo reciente de la zona volcánica sur, en forma similar a la propuesta por Kay et al. (1991), se puede inferir que la corteza ya estaba parcialmente engrosada con anterioridad a la efusión del complejo. Se ha estimado un espesor aproximado de 50 km durante la efusión de las volcanitas del Aconcagua. Si se comparan los valores del Complejo Volcánico Aconcagua con los del sector chileno adyacente de la Formación Farellones (Rivano et al., 1990; Ramos et al., 1991b), se observa que entre 20 y 15 Ma las efusiones de Farellones lo hicieron en una corteza aún más delgada.

ANALISIS ISOTOPICOS

Se ha realizado una serie de análisis isotópicos de muestras representativas de los Complejos Volcánicos La Ramada y Aconcagua, cuyos valores analíticos se ilustran en los cuadros de análisis correspondientes. La figura 16 muestra las relaciones de εNd vs. $^{87}Sr/^{86}Sr$ de rocas de ambos complejos, junto con la de otros dos centros volcánicos de arco, como el del cerro Tórtolas y El Teniente, donde se han seleccionado muestras con edades entre 9 y 12 Ma para comparación. A su vez se han indicado los campos de la zona volcánica sur (SVZ) al sur de los 34° y entre los 33° y 34°. Se puede observar que las relaciones $^{87}Sr/^{86}Sr$ aumentan de sur a norte, en forma coherente con la disminución de los valores de εNd: El Teniente a los 34°S, cerro Aconcagua a los $32^\circ30^\prime$S; cordón La Ramada a 32°S y cerro de las Tórtolas a los 30°S. En forma similar, los valores de $^{87}Sr/^{86}Sr$ aumentan y los de Nd disminuyen en los volca-
Figura 14: Relación La/Sm vs. La/Yb de las muestras de la región del Aconcagua. Se plotean los campos de La Ramada para comparación.

Figura 15: Diagrama de distribución de tierras raras y elementos traza de intrusivos de la región del Aconcagua y Traquitas Puente del Inca.
CUADRO V: CORRELACION DE LOS EVENTOS VOLCANICOS Y PRINCIPALES DISCORDANCIAS EN LA ALTA CORDILLERA ENTRE LOS 32° Y 33°S

<table>
<thead>
<tr>
<th>EDAD</th>
<th>REGION DE LA RAMADA</th>
<th>REGION DEL ACONCAGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior</td>
<td>DACITA CERRO BAYO DEL COBRÉ</td>
<td>Porfidos dacíticos y andésiticos</td>
</tr>
<tr>
<td></td>
<td>ANDESITA CERRO PIRAMIDES</td>
<td>Sección superior Lavas, brechas, tobas andesíticas y dacíticas</td>
</tr>
<tr>
<td></td>
<td>Depósitos de colapso de pared</td>
<td>Sección inferior Lavas, brechas, tobas andesíticas y dacíticas</td>
</tr>
<tr>
<td></td>
<td>Centros volcánicos pósíumos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filones capas andésiticas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estratovolcán La Ramada</td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td>COMPLEJO VOLCANICO LA RAMADA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANDESITA LA LAGUNA</td>
<td>TRAQUITAS PUENTE DEL INCA</td>
</tr>
<tr>
<td></td>
<td>FORMACION FARELLONES</td>
<td></td>
</tr>
<tr>
<td>Inferior</td>
<td>BRECHA ANDESITICA HORNILLAS</td>
<td>GRANODIORITA MATIENZO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

de las de eNd en las rocas más jóvenes. Asimismo, los valores miocenos del cerro de las Tótolas a los 30° son similares a los actuales de la SVZ a los 33°-34°S.

Las tendencias a mayores relaciones de Sr87/Sr86 y menores de eNd pueden ser correlacionadas con las tendencias observadas en los diseños de tierras raras. Estos últimos sugieren mayores presiones hacia el norte en las asociaciones minerales residuales en equilibrio con los magmas eruptados. En el caso de las lavas de la SVZ estos diseños de tierras raras y tendencias isotópicas pueden ser correlacionados con un incremento hacia el norte en el espesor de la corteza. Los estudios de Introcaso et al. (1992) han mostrado espesores de 70 km a los 30°; 65 a los 32°-33° y 57 a los 35°S. Por lo tanto, una tendencia similar puede aplicarse a las rocas volcánicas miocenas. Sobre la base de este razonamiento se puede inferir que el espesor cortical máximo, para el lapso del Mioceno considerado (9-12 Ma), correspondería entre los 30 y 34° al cerro de las Tótolas, mientras que el espesor mínimo se ubicaría en la región del Teniente.

Los espesores corticales miocenos en el cerro de las Tótolas serian similares a los
actuales de la SVZ entre 33 y 34°; mientras que los de la región del Teniente serían similares a los de la cordillera actual al sur de los 34°S (véase Kay et al., 1991; Kay y Abbruzzi, 1996).

Este diseño de los espesores corticales para el Mioceno es consistente con los estudios estructurales que indican los tiempos y magnitud de acortamiento de los Andes Centrales a estas latitudes (Allmendinger et al., 1990, Ramos et al., 1991b, 1996c).

La interpretación geoquímica realizada tiene un sólido sustento teórico. En particular, la introducción de magmas de arco derivados del manto en una corteza engrosada bajo un régimen compresivo, debería dar lugar a una evolución magmática en profundidad. Bajo estas condiciones, las altas presiones existentes controlarían la formación de asociaciones minerales residuales de alta presión. De la misma forma, la introducción de magmas en una corteza atenuada sujeta a un régimen de esfuerzos de baja compresión, debería pasar fácilmente por la corteza y evolucionar a bajas presiones, formando asociaciones minerales residuales de baja presión.

Las tendencias isotópicas similares observadas pueden ser explicadas por mayor cantidad de contaminantes corticales, incorporados a los magmas atrapados en profundidad dentro de la corteza. Sin embargo, la historia isotópica es más complicada, dados los cambios complejos que ocurren en la configuración de la corteza inferior dúctil durante el engrosamiento cortical que pueden eventualmente producir un cambio en los contaminantes corticales.

La migración hacia el este del frente volcánico y el acortamiento orogénico gondwánico de la cordillera produjeron las rocas sílicas permotriásicas del Grupo Choloyi. Estas rocas constituyen el basamento de la Cordillera Frontal, por debajo del frente volcánico cenozoico.

Un basamento de este tipo debería tener mayores relaciones isotópicas de Sr87/Sr86 y menores de εNd que las secuencias mesozoicas occidentales. Así la respuesta isotópica reflejaría no sólo un incremento de los espesores corticales, sino que podría estar afectada por un basamento diferente durante su migración hacia el este. En relación a esto, es interesante notar que los valores más altos de Sr87/Sr86 ocurren en los centros del Mioceno de La Ramada y en el cerro de las Tórtolas y en los centros más jóvenes de la SVZ entre 33° y 34°S, todos ellos truyendo o estando muy próximos al basamento permotriásico. Por otro lado, los centros miocenos del Teniente y Aconcagua y los centros de la SVZ al sur de los 34°S están al oeste de ese basamento.

Sin embargo es necesario destacar que en este análisis de la composición isotópica no se conoce el rol de material subducido. Incluyendo tanto a los sedimentos como al material cortical erosionado de la región del antecar (véase Stern, 1991; Kay y Abbruzzi, 1996).

EVOLUCION GEOLOGICA

En la evolución geológica de la región del Aconcagua se pueden reconocer tres tiempos diferentes de acortamiento dentro del Mioceno. Uno en el Mioceno temprano básicamente en el sector occidental, previo a la Formación Farellones (aproximadamente a los 20-21 Ma) responsable de la discordancia angular que separa estas rocas de las andesitas de la Formación Juncal o del Complejo Pelambres (Ramos et al., 1991b). Esas volcanitas miocenas se emplazarían en una corteza apenas engrosada. Este primer movimiento sería responsable del emplazamiento a niveles actuales del plutón de la Granodiorita Matienzo.

El segundo evento correspondería al sector central y su edad se infiere de los fi-
lones de dacita que se intruyen en los planos de falla en el sector oriental de la quebrada de los Horcones. La dilatación negativa asociada a esta fase compresiva controló el emplazamiento de los diques y filones de las Traquitas Puente del Inca. La edad de esta deformación se ubica entre los 16 y 15 Ma en forma previa al Complejo Volcánico Aconcagua. Las rocas de este complejo se habrían eruptado en una corteza cercana a los 50 km de espesor, como se puede inferir por comparación a la corteza de la zona volcánica sur. Ello implicaría que el relieve de la cordillera durante el Mioceno medio era de aproximadamente 3.000 metros.

El evento final para la Cordillera Principal a estas latitudes se ubicaría alrededor de los 8 Ma, como se infiere del estudio de los depósitos sinorogénicos (Ramos et al., 1990b). Durante este movimiento se produjo el levantamiento del cerro Aconcagua a las alturas actuales.